Refine Your Search



Search Results

Technical Paper

Particulate Characteristics for Varying Engine Operation in a Gasoline Spark Ignited, Direct Injection Engine

The objective of this research is a detailed investigation of particulate sizing and number count from a spark-ignited, direct-injection (SIDI) engine at different operating conditions. The engine is a 549 [cc] single-cylinder, four-valve engine with a flat-top piston, fueled by Tier II EEE. A baseline engine operating condition, with a low number of particulates, was established and repeatability at this condition was ascertained. This baseline condition is specified as 2000 rpm, 320 kPa IMEP, 280 [°bTDC] end of injection (EOI), and 25 [°bTDC] ignition timing. The particle size distributions were recorded for particle sizes between 7 and 289 [nm]. The baseline particle size distribution was relatively flat, around 1E6 [dN/dlogDp], for particle diameters between 7 and 100 [nm], before dropping off to decreasing numbers at larger diameters. Distributions resulting from a matrix of different engine conditions were recorded.
Technical Paper

Combined Synchrotron X-Ray Diffraction and Digital Image Correlation Technique for Measurement of Austenite Transformation with Strain in TRIP-Assisted Steels

The strain-induced diffusionless shear transformation of retained austenite to martensite during straining of transformation induced plasticity (TRIP) assisted steels increases strain hardening and delays necking and fracture leading to exceptional ductility and strength, which are attractive for automotive applications. A novel technique that provides the retained austenite volume fraction variation with strain with improved precision is presented. Digital images of the gauge section of tensile specimens were first recorded up to selected plastic strains with a stereo digital image correlation (DIC) system. The austenite volume fraction was measured by synchrotron X-ray diffraction from small squares cut from the gage section. Strain fields in the squares were then computed by localizing the strain measurement to the corresponding region of a given square during DIC post-processing of the images recorded during tensile testing.
Technical Paper

The Role of Second Phase Hard Particles on Hole Stretchability of Two AA6xxx Alloys

The hole stretchability of two Aluminum Alloys (AA6111 and AA6022) are studied by using a two stages integrated finite element framework where the edge geometry and edge damages from the hole piercing processes were considered in the subsequent hole expansion processes. Experimentally it has been found that AA6022 has higher hole expansion ratios than those of AA6111. This observation has been nicely captured by finite element simulations. The main cause of differences have been identified to the volume fractions of the random distributed second phase hard particles which play a critical role in determining the fracture strains of the materials.
Technical Paper

Modeling of Friction Stir Welding (FSW) Process with Smooth Particle Hydrodynamics (SPH)

Since its invention fifteen years ago, Friction Stir Welding (FSW) has found commercial applications in marine, aerospace, rail, and now automotive industries. Development of the FSW process for each new application, however, has remained largely empirical. Few detailed numerical modeling techniques have been developed that can explain and predict important features of the process physics. This is particularly true in the areas of material flow, mixing mechanisms, and void prediction. In this paper we present a novel modeling approach to simulate FSW processes that may have significant advantages over current traditional finite element or finite difference based methods. The proposed model is based on the Smoothed Particle Hydrodynamics (SPH) method.
Technical Paper

Exhaust Aftertreatment Research for Heavy Vehicles

The Office of Heavy Vehicle Technologies supports research to enable high-efficiency diesel engines to meet future emissions regulations, thus clearing the way for their use in light trucks as well as continuing as the most efficient powerplant for freight-haulers. Compliance with Tier 2 emission regulations for light-duty vehicles will require effective exhaust emission controls (aftertreatment) for diesels in these applications. Diesel-powered heavy trucks face a similar situation for the 2007 regulations announced by EPA in December 2000. DOE laboratories are working with industry to improve emission control technologies in projects ranging from application of new diagnostics for elucidating key mechanisms, to development and evaluation of prototype devices. This paper provides an overview of these R&D efforts, with examples of key findings and developments.
Technical Paper

Plasma-Enhanced Catalytic Reduction of NOx in Simulated Lean Exhaust

NOx reduction efficiency in simulated lean exhaust conditions has been examined for three proprietary catalyst materials using a non-thermal plasma discharge as a pretreatment stage to the catalyst. Using propene as the reducing agent for selective catalytic reduction, 74% reduction of NOx has been observed in the presence of 20 ppm SO2. For sulfur-free simulated exhaust, 84% NOx reduction has been obtained. Results show that the impact of sulfur on the samples examined can vary widely from virtually no effect (< 5%) to more than 20% loss in activity depending on the catalyst. Any loss due to sulfur poisoning appears to be irreversible according to limited measurements on poisoned catalysts exposed to sulfur-free exhaust streams. Catalysts were tested over a temperature range of 473-773K, with the highest activity observed at 773K. Examination of this large temperature window has shown that the optimum C1:NOx ratio changes with temperature.
Technical Paper

Effect of Simulated Diesel Exhaust Gas Composition and Temperature on NOx Reduction Behavior of Alumina and Zeolite Catalysts in Combination With Non-Thermal Plasma

NOx reduction under simulated lean burn conditions was studied using a non-thermal plasma in combination with zeolite and alumina catalysts. The influence of temperature and plasma treatment on the catalytic performance was investigated. Zeolite catalyst B showed high activity in the 150-300°C temperature region. Alumina Catalyst D was most active at temperatures higher than 250°C. In addition, the alumina catalyst was effective in oxidation of aldehydes formed during plasma treatment of the reaction mixture. When the reaction was carried out over a catalyst bed consisting of separate layers of the zeolite and alumina catalysts, the catalyst temperature range for significant NOx reduction was expanded to 150-500°C.
Technical Paper

Measurement of Biaxial Strength of New vs. Used Windshields

This paper presents the strength data for conventional automotive windshields in both the new and used conditions. More specifically, the biaxial strength of outer surface of curved and symmetrically laminated windshield, measured in biaxial flexure, is reported. The relative contributions of inplane membrane stress, which can be significant for new windshields, and bending stress are quantified with the aid of strain gauge rosettes mounted on both the outer and inner surfaces of windshield. The strength distribution for new and used windshields, based on Weibull distribution function, is found to be multimodal indicating more than one family of surface flaws. Depending on handling damage during manufacturing, assembly and installation processes, the low strength region of new windshields can approach that of used windshields with 50,000+ road miles!
Technical Paper

Evaluation of Corona Reactors of Several Geometries for a Plasma Assisted Nitrogen Oxide Emission Reduction Device

Proposed vehicle emissions regulations for the near future have prompted automotive manufactures and component suppliers to focus heavily on developing more efficient exhaust aftertreatment devices to lower emissions from spark and compression ignition engines. One of the primary pollutants from lean-burn engines, especially from diesels, are oxides of nitrogen (NOx). Current three-way catalytic converters will not have adequate performance to meet future emission reduction requirements. Therefore, there is a need for researchers and engineers to develop efficient exhaust aftertreatment devices that will reduce NOx emissions from lean-burn engines. These devices must have very high conversion of NOx gases, be unaffected by exhaust-gas impurity such as sulfur, and have minimal impact on vehicle operations and fuel economy. An effective technology for NOx control that is currently receiving a lot of attention is a non-thermal plasma system.
Technical Paper

Lean NOx Reduction in Two Stages: Non-thermal Plasma Followed by Heterogeneous Catalysis

We present data in this paper showing that non-thermal plasma in combination with heterogeneous catalysis is a promising technique for the treatment of NOx in diesel exhaust. Using a commonly available zeolite catalyst, sodium Y, to treat synthetic diesel exhaust we report approximately 50% chemical reduction of NOx over a broad, representative temperature range. We have measured the overall efficiency as a function of the temperature and hydrocarbon concentration. The direct detection of N2 and N2O when the background gas is replaced by helium confirms that true chemical reduction is occurring.
Technical Paper

Comparison of Plasma-Catalyst and Lean NOx Catalyst for Diesel NOx Reduction

Projected NOx and fuel costs are compared for a plasma-catalyst system and an active lean NOx catalyst system. Comparisons are based on modeling of FTP cycle performance. The model uses steady state laboratory device characteristics, combined with measured vehicle exhaust data to predict NOx conversion efficiency and fuel economy penalties. The plasma system uses a proprietary catalyst downstream of a plasma discharge. The active lean NOx catalyst uses a catalyst along with addition of hydrocarbons to the exhaust. For the plasma catalyst system, NOx conversion is available over a wide temperature range. Increased electrical power improves conversion but degrades vehicle fuel economy; 10 J/L energy deposition costs roughly 3% fuel economy. Improved efficiency is also available with larger catalyst size or increased exhaust hydrocarbon content. For the active lean NOx system, NOx conversion is available only in a narrow temperature range.
Technical Paper

Development of a Non-Thermal Plasma Reactor Electrical Model for Optimum NOx Removal Performance

A double dielectric barrier discharge reactor driven by an alternating voltage is a relatively simple approach to promote oxidation of NO to NO2 for subsequent reduction in a catalyst bed. The chemical performance of such a non-thermal plasma reactor is determined by its current and electric field behavior in the gap, and by the fraction of the current carried by electrons, because the key reactants which initiate the NO oxidation and accompanying chemical changes are produced there, mostly by electron impact. We have tried to determine by models and experiments the bounds on performance of double dielectric barrier reactors and guidelines for optimization. Models reported here predict chemical results from time-resolved applied voltage and series sense capacitor data.
Technical Paper

Selective Reduction of NOx in Oxygen Rich Environments with Plasma-Assisted Catalysis: The Role of Plasma and Reactive Intermediates

The catalytic activity of selected materials (BaY and NaY zeolites, and γ-alumina) for selective NOx reduction in combination with a non-thermal plasma was investigated. Our studies suggest that aldehydes, formed during the plasma treatment of simulated diesel exhaust, are the important species for the reduction of NOx to N2. Indeed, all materials that are active in plasma-assisted catalysis were found to be very effective for the thermal reduction of NOx in the presence of aldehydes. For example, the thermal catalytic activity of a BaY zeolite with aldehydes gives 80-90% NOx removal at 250°C with 200ppm NOx at the inlet and a VHSV=12,000 h-1. The hydrocarbon reductants, n-octane and 1-propyl alcohol, have also shown high thermal catalytic activity for NOx removal over BaY, NaY and γ-alumina.
Technical Paper

Cascade Processing of NOx by Two-Step Discharge/Catalyst Reactors

We present here a phenomenological analysis of a cascade of two-step discharge-catalyst reactors. That is, each step of the cascade consists of a discharge reactor in series with a catalyst bed. These reactors are intended for use in the reduction of tailpipe emission of NOx from diesel engines. The discharge oxidizes NO to NO2, and partially oxidizes HC. The NO2 then reacts on the catalyst bed with hydrocarbons and partially oxidized HCs and is reduced to N2. The cascade may be essential because the best catalysts for this purpose that we have also convert significant fractions of the NO2 back to NO. As we show, reprocessing the gas may not only be necessary, but may also result in energy savings and increased device reliability.
Technical Paper

Multi-Step Discharge/Catalyst Processing of NOx in Synthetic Diesel Exhaust

In the discharge-catalyst treatment of diesel exhaust the discharge chemistry is known to oxidize NO to NO2 as well as to produce partially oxidized hydrocarbons for the heterogeneous reduction step. We find NO2 to be much more easily reduced to N2 on our catalysts, as long as there is a sufficient supply of reductant present. Unfortunately we typically find that a fraction of the NO2 is only partially reduced back to NO. Since much of the original hydrocarbon survives both the plasma and our catalyst, a subsequent stage of plasma will oxidize NO back to NO2 while at the same time replenishing the supply of partially oxidized hydrocarbon for another stage of heterogeneous catalysis. We present experimental evidence illustrating the advantages of multi-step discharge-catalyst treatment of NOx in simulated diesel exhaust.
Technical Paper

Plasma-Facilitated SCR of NOx in Heavy-Duty Diesel Exhaust

This paper describes two independent studies on γ-alumina as a plasma-activated catalyst. γ-alumina (2.5 - 4.3 wt%) was coated onto the surface of mesoporous silica to determine the importance of aluminum surface coordination on NOx conversion in conjunction with nonthermal plasma. Results indicate that the presence of 5- and 6- fold aluminum coordination sites in γ-alumina could be a significant factor in the NOx reduction process. A second study examined the effect of changing the reducing agent on NOx conversion. Several hydrocarbons were examined including propene, propane, isooctane, methanol, and acetaldehyde. It is demonstrated that methanol was the most effective reducing agent of those tested for a plasma-facilitated reaction over γ-alumina.
Technical Paper

3-D Ultrasound for Medical Imaging in Space

Ultrasound is attractive for medical imaging in space because scanners can be small, lightweight, low power, and have minimal electromagnetic emissions. In addition, unlike conventional 2-D ultrasound. 3-D ultrasound allows an operator with no diagnostic skills to collect high-quality scans that can be interpreted by a remote expert. This allows 3-D ultrasound to be used effectively in remote locations. These capabilities are illustrated by the MUSTPAC-1, a portable 3-D ultrasound telemedicine system recently developed for the U.S. military. Design, implementation, and field experiences with the MUSTPAC-1 are discussed, and extensions for use in space are proposed.
Journal Article

Modeling Species Inhibition and Competitive Adsorption in Urea-SCR Catalysts

Although the urea-SCR technology exhibits high NO reduction efficiency over a wide range of temperatures among the lean NO reduction technologies, further improvement in low-temperature performance is required to meet the future emission standards and to lower the system cost. In order to improve the catalyst technologies and optimize the system performance, it is critical to understand the reaction mechanisms and catalyst behaviors with respect to operating conditions. Urea-SCR catalysts exhibit poor NO reduction performance at low-temperature operating conditions (T ≺ 150°C). We postulate that the poor performance is either due to NH₃ storage inhibition by species like hydrocarbons or due to competitive adsorption between NH₃ and other adsorbates such as H₂O and hydrocarbons in the exhaust stream. In this paper we attempt to develop one-dimensional models to characterize inhibition and competitive adsorption in Fe-zeolite-based urea-SCR catalysts based on bench reactor experiments.
Journal Article

Comparing Laser Welding Technologies with Friction Stir Welding for Production of Aluminum Tailor-Welded Blanks

A comparison of welding techniques was performed to determine the most effective method for producing aluminum tailor-welded blanks for high volume automotive applications. Aluminum sheet was joined with an emphasis on post weld formability, surface quality and weld speed. Comparative results from several laser based welding techniques along with friction stir welding are presented. The results of this study demonstrate a quantitative comparison of weld methodologies in preparing tailor-welded aluminum stampings for high volume production in the automotive industry. Evaluation of nearly a dozen welding variations ultimately led to down selecting a single process based on post-weld quality and performance.
Technical Paper

Application of Non-Thermal Plasma Assisted Catalyst Technology for Diesel Engine Emission Reduction

With new legislation and federal regulation for vehicle emission levels, automotive and truck manufacturers have been prompted to focus on emission control technologies that limit the level of exhaust pollutants. One of the primary pollutants, especially from diesel engines, is oxides of nitrogen (NOx). One possible solution to this pollution challenge is to design a more efficient internal combustion engine, which would require better engine operating parameter controls. However, there are limitations associated with such tight engine management. This need has led researchers and engineers to focus on the development of exhaust aftertreatment devices that will reduce NOx emissions with current diesel engines. An optimum aftertreatment device must be unaffected by exhaust-gas impurity poisoning such as sulfur products, and must have minimal impact on vehicle operations and fuel economy.