Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Experimental and Numerical Analysis of Nozzle Flow Number Impact on Full Load Performance of an Euro5 Automotive Diesel Engine

2012-04-16
2012-01-0679
The present paper describes an experimental and numerical study on the effect of the nozzle flow number (FN) on the full load performance of a modern Euro5 diesel automotive engine, in terms of torque, efficiency and exhaust emissions. The improvement of the diesel engine performance requires a continuous development of the engine components, first of all the injection system and in particular the nozzle design. One of the most crucial factors affecting performance and emissions is the nozzle flow number and its influence becomes more and more important as high performance and low emissions are continuous requirements. Indeed, reducing the nozzle flow number, due to an increase of spray-air mixing, an improvement in PM-NOx trade-off is generally expectable. On the other hand, at full load, where peak firing pressure and exhaust valve temperature become the limiting factors, critical operating conditions can be easily reached reducing the nozzle hole diameter.
Technical Paper

Assessment of Engine Control Parameters Effect to Minimize GHG Emissions in a Dual Fuel NG/Diesel Light Duty Engine

2018-04-03
2018-01-0266
The interest in Natural Gas (NG) as alternative fuel for transportation is constantly growing, mostly due to its large availability and lower environmental impact with respect to gasoline or diesel fuel. In this scenario, the application of the Dual Fuel (DF) Diesel- Natural Gas (NG) combustion concept to light duty engines can represent an important route to increment the diffusion of natural gas use. Many studies have proven the benefits of DF with respect to conventional diesel combustion in terms of CO2, NOx, PM and PN emissions, with the main drawback of high unburned hydrocarbon, mainly at low/partial engine loads. This last aspect still prevents the application of DF mode to small displacement engines. In the present work, a 2.0 L Euro 5 compliant diesel engine, equipped with an advanced electronic closed-loop combustion control (CLCC) system, has been set up to operate in DF mode and tested on a dyno test bench.
Technical Paper

Advanced Turbulence Model for SI Combustion in a Heavy-Duty NG Engine

2022-03-29
2022-01-0384
In the recent years, the interest in heavy-duty engines fueled with Compressed Natural Gas (CNG) is increasing due to the necessity to comply with the stringent CO2 limitation imposed by national and international regulations. Indeed, the reduced number of carbon atoms of the NG molecule allows to reduce the CO2 emissions compared to a conventional fuel. The possibility to produce synthetic methane from renewable energy sources, or bio-methane from agricultural biomass and/or animal waste, contributes to support the switch from conventional liquid fuels to CNG. To drive the engine development and reduce the time-to-market, the employment of numerical analysis is mandatory. This requires a continuous improvement of the simulation models toward real predictive analyses able to reduce the experimental R&D efforts. In this framework, 1D numerical codes are fundamental tools for system design, energy management optimization, and so on.
Technical Paper

Estimation of TTW and WTW Factors for a Light Duty Dual Fuel NG-Diesel EU5 Passenger Car

2014-04-01
2014-01-1621
An increasing interest in the use of natural gas in CI engines is currently taking place, due to several reasons: it is cheaper than conventional Diesel fuel, permits a significant reduction in the amount of emitted carbon dioxide and is intrinsically cleaner, being much less prone to soot formation. In this respect, the Dual Fuel (DF) concept has already proven to be a viable solution, industrially implemented for several applications in the high duty engines category. Despite this, some issues still require a technological solution, preventing the commercialization of DF engines in wider automotive fields: the release of high amounts of unburned fuel, the risk of engine knock, the possible thermal efficiency reduction are some factors regarding the fuel combustion aspect. DF configuration examined in the present paper corresponds to Port Fuel Injection of natural gas and direct injection of the Diesel Fuel.
Technical Paper

Emissive Behavior of a Heavy-Duty SI Gas Engine During WHTC

2019-09-09
2019-24-0121
In the arduous aim to reduce petroleum fuel consumption and toxic emissions, gaseous fuels can represent an alternative solution for heavy duty applications with respect to conventional liquid fuels. At the same time, the imposition of more stringent emission regulations in the transport sector, is a crucial aspect to be taken into account during the development of future gas engines. Aim of the present paper was to characterize a heavy duty spark ignition engine, under development for Euro VI compliance, with a particular focus on exhaust particulate emissions. In this sense, the engine was installed on a dynamic test bench, accurately instrumented to analyze combustion evolution, performance and exhaust pollutant emissions, along the World Harmonized Transient Cycle (WHTC).
X