Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Method for the Characterization of Off-Road Terrain Severity

2006-10-31
2006-01-3498
Highway and roadway surface measurement is a practice that has been ongoing for decades now. This sort of measurement is intended to ensure a safe level of road perturbances. The measurement may be conducted by a slow moving apparatus directly measuring the elevation of the road, at varying distance intervals, to obtain a road profile, with varying degrees of resolution. An alternate means is to measure the surface roughness at highway speeds using accelerometers coupled with high speed distance measurements, such as laser sensors. Vehicles out rigged with such a system are termed inertial profilers. This type of inertial measurement provides a sort of filtered roadway profile. Much research has been conducted on the analysis of highway roughness, and the associated metrics involved. In many instances, it is desirable to maintain an off-road course such that the course will provide sufficient challenges to a vehicle during durability testing.
Technical Paper

CFD Modelling of Gasoline Sprays

2005-09-11
2005-24-086
A comprehensive model for sprays emerging from high pressure swirl injectors for GDI engine application has been developed. The primary and secondary atomization mechanism as well as the evaporation process both in standard and superheated conditions are taken into account. The spray modelling after the injection is based on the Liquid Instability Sheet Atomization (LISA) approach, modified to correctly predict the liquid sheet thickness at the breakup length. The effect of different values of the superheat degree on evaporation and impact on the spray distribution and fuel-air mixing is analyzed. Comparisons with experimental data show good agreements under atmospheric conditions and with different superheated degrees, while some discrepancies occur under higher ambient pressures.
Technical Paper

Kinetic Modelling Study of Octane Number and Sensitivity of Hydrocarbon Mixtures in CFR Engines

2005-09-11
2005-24-077
Aim of this work is to present and discuss the possibility and the limits of two zone models for spark-ignition engines using a detailed kinetic scheme for the characterization of the evolution of the air-fuel mixture, while an equilibrium approach is used for the burnt zone. Simple experimental measurements of knocking tendency of different fuels in ideal reactors, such as rapid compression machines and shock tube reactors, cannot be directly used for the analysis of octane numbers and sensitivity of hydrocarbon mixtures. Thus a careful investigation is very useful, not only of the combustion chamber behavior, including the modelling of the turbulent flame front propagation, but also of the fluid dynamic behavior of the intake and exhaust system, accounting for the volumetric efficiency of the engine.
Technical Paper

Progress in Diesel HCCI Combustion Within the European SPACE LIGHT Project

2004-06-08
2004-01-1904
The purpose of the European « SPACE LIGHT » (Whole SPACE combustion for LIGHT duty diesel vehicles) 3-year project launched in 2001 is to research and develop an innovative Homogeneous internal mixture Charged Compression Ignition (HCCI) for passenger cars diesel engine where the combustion process can take place simultaneously in the whole SPACE of the combustion chamber while providing almost no NOx and particulates emissions. This paper presents the whole project with the main R&D tasks necessary to comply with the industrial and technical objectives of the project. The research approach adopted is briefly described. It is then followed by a detailed description of the most recent progress achieved during the tasks recently undertaken. The methodology adopted starts from the research study of the in-cylinder combustion specifications necessary to achieve HCCI combustion from experimental single cylinder engines testing in premixed charged conditions.
Technical Paper

Application of the CTC Model to Predict Combustion and Pollutant Emissions in a Common-Rail Diesel Engine Operating with Multiple Injections and High EGR

2012-04-16
2012-01-0154
Multiple injections and high EGR rates are now widely adopted for combustion and emissions control in passenger car diesel engines. In a wide range of operating conditions, fuel is provided through one to five separated injection events, and recirculated gas fractions between 0 to 30% are used. Within this context, fast and reliable multi-dimensional models are necessary to define suitable injection strategies for different operating points and reduce both the costs and time required for engine design and development. In this work, the authors have applied a modified version of the characteristic time-scale combustion model (CTC) to predict combustion and pollutant emissions in diesel engines using advanced injection strategies. The Shell auto-ignition model is used to predict auto-ignition, with a suitable set of coefficients that were tuned for diesel fuel.
Technical Paper

Development of a CFD Approach to Model Fuel-Air Mixing in Gasoline Direct-Injection Engines

2012-04-16
2012-01-0146
Direct-injection represents a consolidated technology to increase performance and efficiency in spark-ignition engines. It reduces the knock tendency and makes engine downsizing possible through the use of turbocharging. Better control of CO and HC emissions at cold-start is also ensured since there is no wall-impingement in the intake port. However, to take advantages of all the theoretical benefits derived from GDI technology, detailed investigations of both fuel-air mixing and combustion processes are necessary to extend the stratified charge operations in the engine map and to reduce soot emissions, that are now severely regulated by emission standards. In this work, the authors developed a CFD methodology to investigate and optimize the fuel-air mixing process in direct-injection, spark-ignition engines. The Eulerian-Lagrangian approach is used to model the evolution of the fuel spray emerging from a multi-hole injector.
Technical Paper

A 2D Model for Tractor Tire-Soil Interaction: Evaluation of the Maximum Traction Force and Comparison with Experimental Results

2011-04-12
2011-01-0191
The paper investigates the interaction between soil and tractor tires through a 2D numerical model. The tire is schematized as a rigid ring presenting a series of rigid tread bars on the external circumference. The outer profile of the tire is divided into a series of elements, each one able to exchange a normal and a tangential contact force with the ground. A 2D soil model was developed to compute the forces at the ground-tire interface: the normal force is determined on the basis of the compression of the soil generated by the sinking of the tire. The soil is modeled through a layer of springs characterized by two different stiffness for the loading (lower stiffness) and unloading (higher stiffness) condition. This scheme allows to introduce a memory effect on the soil which results stiffer and keeps a residual sinking after the passage of the tire. The normal contact force determines the maximum value of tangential force provided before the soil fails.
Technical Paper

Preliminary Design of a Bio-Regenerative ECLSS Technological Demo Plant for Air and Water Management

2008-06-29
2008-01-2013
Future human exploration roadmaps involve the development of temporary or permanent outposts on Moon and Mars. The capability of providing astronauts with proper conditions for living and working in extraterrestrial environments is therefore a key issue for the sustainability of those roadmaps, and closed-loop Environment Control and Life Support Systems (ECLSSs) and bio-regenerative plants represent the necessary evolution of current technologies for complying with the challenging requirements imposed. This paper presents the architectural design of a terrestrial plant to be exploited to test and validate air and water management technologies for a biological life support system in a closed environment. The plant includes a crew area and a plant growth area. These two spaces can be considered as either a unique volume or two separated environments with reduced contact, e.g. for plant harvesting or other up-keeping activities.
Technical Paper

Integrated Breathing Model and Multi-Variable Control Approach for Air Management in Advanced Gasoline Engine

2006-04-03
2006-01-0658
The evolution of automotive engines calls for the design of electronic control systems optimizing the engine performance in terms of reduced fuel consumption and pollutant emissions. However, the opportunities provided by modern engines have not yet completely exploited, since the adopted control strategies are still largely developed in a very heuristic way and rely on a number of SISO (Single Input Single Output) designs. On the contrary, the strong coupling between the available actuators calls for a MIMO (Multi Input Multi Output) control design approach. To this regard, the availability of reliable dynamic engine models plays an important role in the design of engine control and diagnostic systems, allowing for a significant reduction of the development times and costs. This paper presents a control-oriented model of the air-path system of today's gasoline internal combustion engines.
Technical Paper

Development and Application of S.I. Combustion Models for Emissions Prediction

2006-04-03
2006-01-1108
The s.i. combustion process and its corresponding pollutant formation are investigated by means of a quasiD approach and a CFD model. This work has been motivated by the need to better understand the reliability of such models and to assess their accuracies with respect to the prediction of engine performances and emissions. An extended dissertation about the fundamental mechanisms governing the pollutant formation in the turbulent premixed combustion which characterizes the s.i. engines is given. The conclusion of such analysis is the definition of a new reduced chemical scheme, based on the application of partial-equilibrium and steady-state assumptions for the radicals and the solution of a transport equation for each specie which is kinetically controlled. For this purpose the CFD code OpenFOAM [1, 2, 3] and the thermo-fluid dynamic code GASDYN [4, 5] have been applied and enhanced.
Technical Paper

A Low Temperature Pathway Operating the Reduction of Stored Nitrates in Pt-Ba/Al2O3 Lean NOx Trap Systems

2006-04-03
2006-01-1368
In this paper the low temperature reduction process of nitrates stored at high temperatures over model Pt-Ba/Al2O3 LNT catalysts using both H2 and C3H6 is analyzed. The results indicate that over the Pt-Ba/Al2O3 catalyst the reduction of stored NOx with both H2 and C3H6 occurs at temperature below those corresponding to their thermal stability. Accordingly, the reduction process occurs through a Pt-catalyzed surface reaction, which does not involve, as a preliminary step, the thermal decomposition of the adsorbed NOx species. The occurrence of such a pathway also requires the co-presence of the storage element and of the noble metal on the same support.
Technical Paper

Computational Chemistry Consortium: Surrogate Fuel Mechanism Development, Pollutants Sub-Mechanisms and Components Library

2019-09-09
2019-24-0020
The Computational Chemistry Consortium (C3) is dedicated to leading the advancement of combustion and emissions modeling. The C3 cluster combines the expertise of different groups involved in combustion research aiming to refine existing chemistry models and to develop more efficient tools for the generation of surrogate and multi-fuel mechanisms, and suitable mechanisms for CFD applications. In addition to the development of more accurate kinetic models for different components of interest in real fuel surrogates and for pollutants formation (NOx, PAH, soot), the core activity of C3 is to develop a tool capable of merging high-fidelity kinetics from different partners, resulting in a high-fidelity model for a specific application. A core mechanism forms the basis of a gasoline surrogate model containing larger components including n-heptane, iso-octane, n-dodecane, toluene and other larger hydrocarbons.
Technical Paper

Effects of In-Cylinder Flow Structures on Soot Formation and Oxidation in a Swirl-Supported Light-Duty Diesel Engine

2019-09-09
2019-24-0009
In this paper, computation fluid dynamics (CFD) simulations are performed to describe the effect of in-cylinder flow structures on the formation and oxidation of soot in a swirl-supported light-duty diesel engine. The focus of the paper is on the effect of swirl motion and injection pressure on late cycle soot oxidation. The structure of the flow at different swirl numbers is studied to investigate the effect of varying swirl number on the coherent flow structures. These coherent flow structures are studied to understand the mechanism that leads to efficient soot oxidation in late cycle. Effect of varying injection pressure at different swirl numbers and the interaction between spray and swirl motions are discussed. The complexity of diesel combustion, especially when soot and other emissions are of interest, requires using a detailed chemical mechanism to have a correct estimation of temperature and species distribution.
Technical Paper

CFD Investigation of the Impact of Electrical Heating on the Light-off of a Diesel Oxidation Catalyst

2018-04-03
2018-01-0961
In the last years, as a response to the more and more restrictive emission legislation, new devices (SRC, DOC, NOx-trap, DPF) have been progressively introduced as standard components of modern after-treatment system for Diesel engines. In addition, the adoption of electrical heating is nowadays regarded with interest as an effective solution to promote the light-off of the catalyst at low temperature, especially at the start-up of the engine and during the low load operation of the engine typical of the urban drive. In this work, a state-of-the-art 48 V electrical heated catalyst is considered, in order to investigate its effect in increasing the abatement efficiency of a standard DOC. The electrical heating device considered is based on a metallic support, arranged in a spiral layout, and it is heated by the Joule effect due to the passage of the electrical current.
Technical Paper

Direct Evaluation of Turbine Isentropic Efficiency in Turbochargers: CFD Assisted Design of an Innovative Measuring Technique

2019-04-02
2019-01-0324
Turbocharging is playing today a fundamental role not only to improve automotive engine performance, but also to reduce fuel consumption and exhaust emissions for both Spark Ignition and Diesel engines. Dedicated experimental investigations on turbochargers are therefore necessary to assess a better understanding of its performance. The availability of experimental information on turbocharger steady flow performance is an essential requirement to optimize the engine-turbocharger matching, which is usually achieved by means of simulation models. This aspect is even more important when referred to the turbine efficiency, since its swallowing capacity can be accurately evaluated through the measurement of mass flow rate, inlet temperature and pressure ratio across the machine.
Technical Paper

Instrumented Steering Wheel for Accurate ADAS Development

2019-04-02
2019-01-1241
We introduce in this paper a new Instrumented Steering Wheel (ISW) for ADAS development. The ISW has been designed, constructed and employed with satisfactory results. The ISW is able to measure three forces, three moments and the grip force at each hand of the driver. The ISW has been used for ADAS activities on an instrumented road vehicle. The aim was to use both the vehicle states and the ISW data for evaluating the driver behaviour. Two research activities were performed. The first activity refers to monitoring the driver behaviour during tests on a track. The second activity refers to the use of haptic ISWs, able to improve the ADAS systems. Referring to the first activity, the greatest majority of drivers applied always the same sequence of forces (pull, radial, tangential) either during emergency manoeuvres, either during slow speed curving.
Technical Paper

Performance and Exhaust Emissions Analysis of a Diesel Engine Using Oxygen-Enriched Air

2018-09-10
2018-01-1785
Oxygen enriched air (EA) is a well known industrial mixture in which the content of oxygen is higher respect the atmospheric one, in the range 22-35%. Oxygen EA can be obtained by desorption from water, taking advantage of the higher oxygen solubility in water compared to the nitrogen one, since the Henry constants of this two gases are different. The production of EA by this new approach was already studied by experimental runs and theoretical considerations. New results using salt water are reported. EA promoted combustion is considered as one of the most interesting technologies to improve the performance in diesel engines and to simultaneously control and reduce pollution. This paper explores, by means of 3-dimensional computational fluid dynamics simulations, the effects of EA on the performance and exhaust emissions of a high-speed direct-injection diesel engine.
Technical Paper

A Numerical Study on the Sensitivity of Soot and NOx Formation to the Operating Conditions in Heavy Duty Engines

2018-04-03
2018-01-0177
In this paper, computation fluid dynamics (CFD) simulations are employed to describe the effect of flow parameters on the formation of soot and NOx in a heavy duty engine under low load and high load. The complexity of diesel combustion, specially when soot, NOx and other emissions are of interest, requires using a detailed chemical mechanism to have a correct estimation of temperature and species distribution. In this work, Multiple Representative Interactive Flamelets (MRIF) method is employed to describe the chemical reactions, ignition, flame propagation and emissions in the engine. A phenomenological model for soot formation, including soot nucleation, coagulation and oxidation with O2 and OH is incorporated into the flamelet combustion model. Different strategies for modelling NOx are chosen to take into account the longer time scale for NOx formation. The numerical results are compared with experimental data to show the validity of the model for the cases under study.
Journal Article

Geometric and Fluid-Dynamic Characterization of Actual Open Cell Foam Samples by a Novel Imaging Analysis Based Algorithm

2017-10-05
2017-01-9288
Metallic open-cell foams have proven to be valuable for many engineering applications. Their success is mainly related to mechanical strength, low density, high specific surface, good thermal exchange, low flow resistance and sound absorption properties. The present work aims to investigate three principal aspects of real foams: the geometrical characterization, the flow regime characterization, the effects of the pore size and the porosity on the pressure drop. The first aspect is very important, since the geometrical properties depend on other parameters, such as porosity, cell/pore size and specific surface. A statistical evaluation of the cell size of a foam sample is necessary to define both its geometrical characteristics and the flow pattern at a given input velocity. To this purpose, a procedure which statistically computes the number of cells and pores with a given size has been implemented in order to obtain the diameter distribution.
Technical Paper

The Air Assisted Direct Injection ELEVATE Automotive Engine Combustion System

2000-06-19
2000-01-1899
The purpose of the ELEVATE (European Low Emission V4 Automotive Two-stroke Engine) industrial research project is to develop a small, compact, light weight, high torque and highly efficient clean gasoline 2-stroke engine of 120 kW which could industrially replace the relatively big existing automotive spark ignition or diesel 4-stroke engine used in the top of the mid size or in the large size vehicles, including the minivan vehicles used for multi people and family transportation. This new gasoline direct injection engine concept is based on the combined implementation on a 4-stroke bottom end of several 2-stroke engine innovative technologies such as the IAPAC compressed air assisted direct fuel injection, the CAI (Controlled Auto-Ignition) combustion process, the D2SC (Dual Delivery Screw SuperCharger) for both low pressure engine scavenging and higher pressure IAPAC air assisted DI and the ETV (Exhaust charge Trapping Valve).
X