Refine Your Search

Topic

Author

Search Results

Technical Paper

Multi-Dimensional Modeling of Combustion in Compression Ignition Engines Operating with Variable Charge Premixing Levels

2011-09-11
2011-24-0027
Premixed combustion modes in compression ignition engines are studied as a promising solution to meet fuel economy and increasingly stringent emissions regulations. Nevertheless, PCCI combustion systems are not yet consolidated enough for practical applications. The high complexity of such combustion systems in terms of both air-fuel charge preparation and combustion process control requires the employment of robust and reliable numerical tools to provide adequate comprehension of the phenomena. Object of this work is the development and validation of suitable models to evaluate the effects of charge premixing levels in diesel combustion. This activity was performed using the Lib-ICE code, which is a set of applications and libraries for IC engine simulations developed using the OpenFOAM® technology.
Technical Paper

Direct Evaluation of Turbine Isentropic Efficiency in Turbochargers: CFD Assisted Design of an Innovative Measuring Technique

2019-04-02
2019-01-0324
Turbocharging is playing today a fundamental role not only to improve automotive engine performance, but also to reduce fuel consumption and exhaust emissions for both Spark Ignition and Diesel engines. Dedicated experimental investigations on turbochargers are therefore necessary to assess a better understanding of its performance. The availability of experimental information on turbocharger steady flow performance is an essential requirement to optimize the engine-turbocharger matching, which is usually achieved by means of simulation models. This aspect is even more important when referred to the turbine efficiency, since its swallowing capacity can be accurately evaluated through the measurement of mass flow rate, inlet temperature and pressure ratio across the machine.
Technical Paper

Subjective-Objective Ride Comfort Assessment of Farm Tractors

2016-04-05
2016-01-1437
The paper is focused on both the subjective and the objective ride comfort evaluation of farm tractors. The experimental measurement of the relevant accelerations occurring at the tractor body, at the cabin and at the seat was performed on a number of different farm tractors. A subjective rating of the ride comfort level was performed by considering five different drivers. The comfort index was computed according with ISO 2631 and other standards. The acceleration of the seated subject was computed by means of a proper mechanical model of a farm tractor and derived at different positions on the subject body. It turned out that the acceleration of the lower torso was particularly relevant for establishing a matching between the subjective perception and the objective measurement and computation. A number of indices have been derived from the measured data which are able to correlate the subjective driver feeling with the measured accelerations.
Technical Paper

Industry 4.0 and Automotive 4.0: Challenges and Opportunities for Designing New Vehicle Components for Automated and/or Electric Vehicles

2019-04-02
2019-01-0504
The paper deals with the “wise sensorization” of vehicle components. In the upcoming full digitalization of mobility, vehicle components are getting more and more sensorized. The problem is why, what, when and where vehicle components can be sensorized. The paper attempts a preliminary problem statement for the sensorization of vehicle components. A theoretical basic investigation is introduced, setting the main concepts on which extended sensorization is advisable or not. The paradigms of Industry 4.0 and Automotive 4.0 are addressed, namely sensors are proposed to be used both for monitoring the manufacturing process and for monitoring the service life of the component. In general, sensors are proposed to be used for multiple purposes. Two examples of sensorized components are briefly presented. One refers to a sensorized electric motor, the other one refers to a sensorized wheel.
Journal Article

Generation of Turbulence in a RCEM towards Engine Relevant Conditions for Premixed Combustion Based on CFD and PIV Investigations

2017-09-04
2017-24-0043
The interaction of turbulent premixed methane combustion with the surrounding flow field can be studied using optically accessible test rigs such as a rapid compression expansion machine (RCEM). The high flexibility offered by such a test rig allows its operation at various thermochemical conditions at ignition. However, limitations inherent to such test rigs due to the absence of an intake stroke do not allow turbulence production as found in IC-engines. Hence, means to introduce turbulence need to be implemented and the relevant turbulence quantities have to be identified in order to enable comparability with engine relevant conditions. A dedicated high-pressure direct injection of air at the beginning of the compression phase is considered as a measure to generate adjustable turbulence intensities at spark timing and during the early flame propagation.
Technical Paper

CFD Modelling of Gasoline Sprays

2005-09-11
2005-24-086
A comprehensive model for sprays emerging from high pressure swirl injectors for GDI engine application has been developed. The primary and secondary atomization mechanism as well as the evaporation process both in standard and superheated conditions are taken into account. The spray modelling after the injection is based on the Liquid Instability Sheet Atomization (LISA) approach, modified to correctly predict the liquid sheet thickness at the breakup length. The effect of different values of the superheat degree on evaporation and impact on the spray distribution and fuel-air mixing is analyzed. Comparisons with experimental data show good agreements under atmospheric conditions and with different superheated degrees, while some discrepancies occur under higher ambient pressures.
Technical Paper

Kinetic Modelling Study of Octane Number and Sensitivity of Hydrocarbon Mixtures in CFR Engines

2005-09-11
2005-24-077
Aim of this work is to present and discuss the possibility and the limits of two zone models for spark-ignition engines using a detailed kinetic scheme for the characterization of the evolution of the air-fuel mixture, while an equilibrium approach is used for the burnt zone. Simple experimental measurements of knocking tendency of different fuels in ideal reactors, such as rapid compression machines and shock tube reactors, cannot be directly used for the analysis of octane numbers and sensitivity of hydrocarbon mixtures. Thus a careful investigation is very useful, not only of the combustion chamber behavior, including the modelling of the turbulent flame front propagation, but also of the fluid dynamic behavior of the intake and exhaust system, accounting for the volumetric efficiency of the engine.
Technical Paper

Integrated Breathing Model and Multi-Variable Control Approach for Air Management in Advanced Gasoline Engine

2006-04-03
2006-01-0658
The evolution of automotive engines calls for the design of electronic control systems optimizing the engine performance in terms of reduced fuel consumption and pollutant emissions. However, the opportunities provided by modern engines have not yet completely exploited, since the adopted control strategies are still largely developed in a very heuristic way and rely on a number of SISO (Single Input Single Output) designs. On the contrary, the strong coupling between the available actuators calls for a MIMO (Multi Input Multi Output) control design approach. To this regard, the availability of reliable dynamic engine models plays an important role in the design of engine control and diagnostic systems, allowing for a significant reduction of the development times and costs. This paper presents a control-oriented model of the air-path system of today's gasoline internal combustion engines.
Technical Paper

Oxygen and Propellant Extraction from Martian Atmosphere: Feasibility Study of a Small Technological Demonstration Plant

2008-06-29
2008-01-1984
The sustainability of Martian outposts development is strongly based on the capability of achieving a high level of autonomy both in terms of operations management and of resources availability. In situ production of consumables is a key point to allow humans to work and live on Mars avoiding or limiting the need for re-supplies of materials from Earth. Required consumables can be produced in situ exploiting the locally available resources, but also by means of green-houses and waste recycle systems. Dedicated robotic missions for in situ demonstration of this type of technologies are a fundamental step of the Martian In Situ Resources Utilization (ISRU) development roadmap. This paper is focused on the extraction of oxygen and fuels (e.g. methane) from the Martian atmosphere, and presents a feasibility study for a small technological demonstration plant.
Technical Paper

Test-Model Correlation in Spacecraft Thermal Control by Means of MonteCarlo Techniques

2007-07-09
2007-01-3120
In the paper some methods are presented, with the corresponding practical examples, related to MonteCarlo (MC) techniques for thermal model/test correlation purposes. The MonteCarlo techniques applied to model correlation are intended to be used as an alternative to empirical ‘manual’ correlation techniques, gradients methods, matrix methods based on least square fit minimization. First of all, Design Of Experiments (DoE) tools are used to determine the model response to uncertain parameters and the confidence level of such a response. A sensitivity map is built, allowing the design of the test to maximize the response of the system to the uncertain parameters. Techniques derived from the extreme statistics are used to extrapolate data beyond test limits, with a sufficient confidence in the queue behaviour.
Technical Paper

Effect of Spray-Wall Interaction on Air Entrainment in a Transient Diesel Spray

1993-03-01
930920
The influence of spray-wall interaction on air entrainment in an unsteady non-evaporating diesel spray was studied using laser Doppler anemometry. The spray was injected into confined quiescent air at ambient pressure and temperature and made to impact on a flat wall. The air velocity component normal to a cylindrical surface surrounding the spray was measured during the entire injection period, allowing to evaluate the time history of the entrained air mass flow rate. The influence of wall distance and spray impingement angle on air entrainment characteristics has been investigated and the results indicate that the presence of a wall increases the entrained mass flow rate in the region close to the surface, during the main injection period. Normal impingement appears to produce stronger effects than oblique incidence at 30 and 45 deg. A qualitative explanation of the results is also proposed, based on the drop-gas momentum exchange mechanism.
Technical Paper

Design Restraints in Space Laboratories

2003-07-07
2003-01-2435
1Restraints constitute the unique and necessary aids for living and working in microgravity conditions in which crewmembers need facilities as support to move around and as restraints while they work. In environments with microgravity, disturbance to the vestibular sense, when it occurs together with conflicting visual and perceptive stimuli, can cause disorientation, vertigo and illusions regarding posture and movement. Therefore, the design of restraints is a critical ingredient of success for crewmembers performance in space during both IVA and EVA activities. Standard restraints and mobility aids are provided on ISS such that all installation, operation, and maintenance can be performed: Foot Restraint, Adjustable Length Tether, Handrails, Adjustable Length Tether and Torso Restraint Assembly. Crewmembers use Standard Foot Restraints and Handrails to improve the movement capacities and the postural stability.
Technical Paper

A Method for the Characterization of Off-Road Terrain Severity

2006-10-31
2006-01-3498
Highway and roadway surface measurement is a practice that has been ongoing for decades now. This sort of measurement is intended to ensure a safe level of road perturbances. The measurement may be conducted by a slow moving apparatus directly measuring the elevation of the road, at varying distance intervals, to obtain a road profile, with varying degrees of resolution. An alternate means is to measure the surface roughness at highway speeds using accelerometers coupled with high speed distance measurements, such as laser sensors. Vehicles out rigged with such a system are termed inertial profilers. This type of inertial measurement provides a sort of filtered roadway profile. Much research has been conducted on the analysis of highway roughness, and the associated metrics involved. In many instances, it is desirable to maintain an off-road course such that the course will provide sufficient challenges to a vehicle during durability testing.
Technical Paper

MonteCarlo Techniques in Thermal Analysis – Design Margins Determination Using Reduced Models and Experimental Data

2006-07-17
2006-01-2113
In the paper several application techniques of MonteCarlo (MC) method applied to thermal analysis of space vehicles are presented. Although these methods are widely used in other engineering domains, their introduction to the thermal one is quite recent and not fully developed in the industrial practice. This paper aims at showing that, even without demanding computation resources (all what presented has been obtained with a single processor PC) MonteCarlo analysis techniques, in a preliminary design phase, can support and integrate engineering judgment of the thermal designer. In particular, it is exploited the applicability of the method to reduced thermal models, with a clear advantage in terms of computation time. An original approach is proposed, and results are shown. The papers shows the applicability of the MC method to the case when experimental data of the uncertain parameters are available, using the bootstrap re-sampling techniques.
Technical Paper

Lightweight Design of a Racing Motorcycle Wheel

2016-04-05
2016-01-1576
Mass minimization is a key objective for the design of racing motorcycle wheels. The structural optimization of a front motorcycle wheel is presented in the paper. Topology Optimization has been employed for deriving optimized structural layouts. The minimum compliance problem has been solved, symmetry and periodicity constraints have been introduced. The wheel has been optimized by considering several loading conditions. Actual loads have been measured during track tests by means of a special measuring wheel. The forces applied by the tire to the rim have been introduced in an original way. Different solutions characterized by different numbers of spokes have been analyzed and compared. The actual racing wheel has been further optimized accounting for technological constraints and the mass has been reduced down to 2.9 kilograms.
Technical Paper

Experimental Characterization of Power Dissipation of Battery Cells for Space Environment

2002-07-15
2002-01-2544
An experimental campaign is presented aiming at the characterization of thermal dissipation of batteries to be used on board of small satellites. A suitably designed device allows to manage automatically the orbital cycling simulation between battery cell charge and discharge. The cell thermal performance is characterized in various combinations of temperature, discharge current and Depth of Discharge. The gathered data are used for providing guidelines in the design of a family of Italian Small Satellites.
Technical Paper

Design and Evaluation of the ELEVATE Two-stroke Automotive Engine

2003-03-03
2003-01-0403
ELEVATE (European Low Emission V4 Automotive Two-stroke Engine) was a research project part funded by the European Commission to design and develop a compact and efficient gasoline two-stroke automotive engine. Five partners were involved in the project, IFP (Institut Français Du Pétrole) who were the project leaders, Lotus, Opcon (Autorotor and SEM), Politecnico di Milano and Queen's University Belfast. The general project targets were to achieve Euro 3 emissions compliance without DeNOx catalisation, and a power output of 120 kW at 5000 rev/min with maximum torque of 250 Nm at 2000 rev/min. Specific targets were a 15% reduction in fuel consumption compared to its four-stroke counterpart and a size and weight advantage over the four-stroke diesel with significant reduction in particulate and NOx emissions. This paper describes the design philosophy of the engine as well as the application of the various partner technologies used.
Technical Paper

CFD Modeling and Validation of the ECN Spray G Experiment under a Wide Range of Operating Conditions

2019-09-09
2019-24-0130
The increasing diffusion of gasoline direct injection (GDI) engines requires a more detailed and reliable description of the phenomena occurring during the fuel injection process. As well known the thermal and fluid-dynamic conditions present in the combustion chamber greatly influence the air-fuel mixture process deriving from GDI injectors. GDI fuel sprays typically evolve in wide range of ambient pressure and temperatures depending on the engine load. In some particular injection conditions, when in-cylinder pressure is relatively low, flash evaporation might occur significantly affecting the fuel-air mixing process. In some other particular injection conditions spray impingement on the piston wall might occur, causing high unburned hydrocarbons and soot emissions, so currently representing one of the main drawbacks of GDI engines.
Technical Paper

A Novel 1D Co-Simulation Framework for the Prediction of Tailpipe Emissions under Different IC Engine Operating Conditions

2019-09-09
2019-24-0147
The accurate prediction of pollutant emissions generated by IC engines is a key aspect to guarantee the respect of the emission regulation legislation. This paper describes the approach followed by the authors to achieve a strict numerical coupling of two different 1D modeling tools in a co-simulation environment, aiming at a reliable calculation of engine-out and tailpipe emissions. The main idea is to allow an accurate 1D simulation of the unsteady flows and wave motion inside the intake and exhaust systems, without resorting to an over-simplified geometrical discretization, and to rely on advanced thermodynamic combustion models and kinetic sub-models for the calculation of cylinder-out emissions. A specific fluid dynamic approach is then used to track the chemical composition along the exhaust duct-system, in order to evaluate the conversion efficiency of after-treatment devices, such as TWC, GPF, DPF, DOC, SCR and so on.
Journal Article

Race Motorcycle Smart Wheel

2015-04-14
2015-01-1520
A wheel able to measure the generalized forces at the hub of a race motorcycle has been developed and used. The wheel has a very limited mass. It is made from magnesium with a special structure to sense the forces and provide the required level of stiffness. The wheel has been tested both indoor for preliminary approval and on the track. The three forces and the three moments acting at the hub can be measured with a resolution of 1N and 0.3Nm respectively. A specifically programmed DSP (Digital Signal Processor) embedded in the sensor allows real-time acquisition and processing of the six signals of forces/torques components. The signals are sent via Bluetooth to an onboard receiver connected to the vehicle CAN (Controller Area Network) bus. Each signal is sampled at 200Hz. The wheel can be used to derive the actual tyre characteristics or to record the loads acting at the hub.
X