Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Optimization of a Variable Geometry Exhaust System Through Design of Experiment

2008-04-14
2008-01-0675
Experimental Design methodologies have been applied in conjunction with objective functions for the optimization of the internal geometry of a rear muffler of a subcompact car equipped with a 1.4 liters displacement s.i. turbocharged engine. The muffler also features an innovative variable geometry design. The definition of an objective function summarising the silencing capability of the muffler has been driving the optimization process with the aim to reduce the tailpipe noise while maintaining acceptable pressure losses and complying with severe space constraints. Design of Experiments techniques for the reduction of experimental plans have been shown to be extremely effective to find out the optimum values of the design parameters, allowing a remarkable reduction of the time required by the design process in comparison with full factorial designs.
Technical Paper

CFD Analysis and Experimental Validation of the Inlet Flow Distribution in Close Coupled Catalytic Converters

2003-10-27
2003-01-3072
The unsteady flow effects in two different close coupled catalytic converters were investigated in order to achieve a better understanding of the steady state experimental tests which are usually performed to evaluate a flow distribution. Firstly the validity of a CFD model was achieved through a comparison of some steady state simulations with the results of HWA experimental measurements. Several different formulations of the uniformity index, that were found in literature, were then compared, trying to highlight the strengths and shortcomings of each one. Further information was derived from a comparison of the two catalysts that were tested to achieve a general methodology that would be useful for future analysis. Finally, a new approach to evaluate the flow distribution using a steady state analysis was proposed by comparing the results of a transient simulation that was obtained for a whole engine cycle.
Technical Paper

Experimental Investigation on Soot and NOx Formation in a DI Common Rail Diesel Engine with Pilot Injection

2001-03-05
2001-01-0657
The influence of pilot injection timing and quantity on soot, NOx, combustion noise and bsfc has been analyzed on a passenger car DI Diesel engine prototype equipped with a common rail fuel injection system. The investigated engine operating points were 1500/5, 2000/2, 2500/8 rpm/bar, which are quite typical of EC driving cycles. For each of these operating conditions, the pilot injection quantity was varied by up to 15% of the total injected quantity and the pilot injection timing was varied between 32° and 1° crank angle degrees. The principal combustion characteristics were determined on the basis of the heat release, and a thorough statistical analysis was performed to infer the correlation between the combustion parameters and soot and NOx emissions.
Technical Paper

Dynamic Model of a Load-Following Fuel Cell Vehicle: Impact of the Air System

2002-03-04
2002-01-0100
Fuel cell vehicles promise to become, in near future, competitive with conventional cars in terms of performance, efficiency and compliance with emission reduction schedules. However, many steps still have to be done, and a series of fundamental choices, such as high vs. low air pressure system options remain unresolved. Modeling can be a powerful instrument to evaluate different components or plant layout, and to predict the dynamic behavior of a fuel cell system. The first part of this paper illustrates the implementation of a direct engineering dynamic model of a load-following fuel cell vehicle. The modeling techniques, assumptions and basic equations are explained for each subsystem, with special attention to the air supply system, whose dynamic simulation was one of the primary targets of this work. Some of the simulation results are presented in the second part.
X