Refine Your Search

Search Results

Viewing 1 to 12 of 12
Technical Paper

Non-Equilibrium Plasma Ignition for Internal Combustion Engines

2011-09-11
2011-24-0090
High-voltage nanosecond gas discharge has been shown to be an efficient way to ignite ultra-lean fuel air mixtures in a bulk volume, thanks to its ability to produce both high temperature and radical concentration in a large discharge zone. Recently, a feasibility study has been carried out to study plasma-assisted ignition under high-pressure high-temperature conditions similar to those inside an internal combustion engine. Ignition delay times were measured during the tests, and were shown to be decreasing under high-voltage plasma excitation. The discharge allowed instant control of ignition, and specific electrode geometry designs enabled volumetric ignition even at high-pressure conditions.
Technical Paper

Analysis of a Neural Network Lateral Controller for an Autonomous Road Vehicle

1992-08-01
921561
Lateral control of a simulated vehicle in a simulated highway driving environment is explored. Three modules are used: a driving simulator, a visual preprocessor, and a neural network. The driving simulator, called RoadWay, is a three-dimensional computer graphics environment which supports interactive highway design and driving capabilities. The visual preprocessor, RoadVision, receives images from RoadWay, which represent forward-looking views from the cockpit of the simulated vehicle, and encodes these images using a family of oriented two-dimensional Gabor filters. Two Adaptive Resonance Theory neural network architectures, ART2 and ARTMAP, constituting the RoadBrain module, are employed to learn mappings between the visual encodings and emergent image categories, and then to associate these image categories with appropriate steering decisions.
Technical Paper

Combustion Optimization Computations-Part I: Swirl and Squish Effects in Air-Assist Injection Engines

1992-10-01
922240
Results are presented of two-dimensional computations of air-assist fuel injection into engines with bowl-in-piston and bowl-in-head, with and without swirl and for early and late injection but without combustion. The general finding is that swirl tends to destroy the head vortex of the air/fuel jet and results in a faster collapse of the spray cone toward its axis. Faster collapse is also promoted by high density of the chamber gas (e.g. late injection) and bowl-in-head design (limited availability of chamber gas around the spray, presence of walls and delayed influence of squish by the injector). With enhanced collapse, fuel-rich regions are formed around the axis and away from the injector. With reduced collapse, the radial distribution of the fuel is more uniform. Thus swirl tends to lead to both slower vaporization and richer vapor mixtures. Also, with strong swirl the rich mixtures tend to end up by the injector; without swirl, by the piston.
Technical Paper

Investigation of the Fuel Distribution in a Two-Stroke Engine with an Air-Assisted Injector

1994-03-01
940394
Results of experiments performed on a direct-injection two-stroke engine using an air-assisted injector are presented. Pressure measurements in both the engine cylinder and injector body coupled with backlit photographs of the spray provide a qualitative understanding of the spray dynamics from the oscillating poppet system. The temporal evolution of the spatial distribution of both liquid and vapor fuel were measured within the cylinder using the Exciplex technique with a new dopant which is suitable for tracing gasoline. However, a temperature dependence of the vapor phase fluorescence was found that limits the direct quantitative interpretation of the images. Investigation of a number of realizations of the vapor field at a time typical of ignition for a stratified-charge engine shows a high degree of cycle to cycle variability with some cycles exhibiting a high level of charge stratification.
Technical Paper

Initial Comparisons of Computed and Measured Hollow-Cone Sprays in an Engine

1994-03-01
940398
Efforts are reported to reproduce the distribution of liquid and vapor fuel from a pulsating hollow-cone liquid-only injector measured by the planar exciplex technique within the head cup of a motored ported single-cylinder engine operated at 1600 rpm with high swirl and a squish ratio of 75%. The injector, cup and cylinder were coaxial. The measurements show that shortly after the beginning of the injection the maximum liquid and vapor fuel concentrations are along the axis but also that the spray achieves substantial radial and axial penetrations. The engine flowfield without injection had previously been characterized by LDV and PIV and so had been the injector and its spray in constant pressure environments so that little arbitrariness was left in reproducing the spray in the engine. Two spray models were used. In one the large drops produced by the break up of the liquid sheet were introduced into the numerical field at the injector exit nearly with the poppet seat angle.
Technical Paper

Comparisons of Computed and Measured Hollow-Cone Sprays in an Engine

1995-02-01
950284
A second effort is reported to reproduce the distribution of fuel from a pulsating hollow-cone liquid-only poppet injector measured by the planar exciplex technique within the head cup of a motored ported single-cylinder engine operated at 1600 rpm with high swirl and a squish ratio of 75%. The injector, cup and cylinder were coaxial. The engine flowfield without injection had previously been characterized by LDV and PIV and so had been the injector and its spray in constant pressure environments. In a previous effort, the injector was assume to generate drop and the computed collapse of the spray was found to be too slow. In this work, the injector is assumed to generate liquid sheets that change shape and produce drops from their leading edges and surfaces as they propagate through the gas.
Technical Paper

Fuel Distribution Effects on the Combustion of a Direct-injection Stratified-Charge Engine

1995-02-01
950460
Simultaneous fuel distribution images (by shadowgraph and laser-induced fluorescence) and cylinder pressure measurements are reported for a combusting stratified-charge engine with a square cup in the head at 800 RPM and light load for two spark locations with and without swirl. Air-assisted direct-injection occurred from 130°-150° after bottom dead center (ABDC) and ignition was at 148° ABDC. The engine is ported and injection and combustion take place every 6th cycle. The complicated interaction of the squish, fuel/air jet, square cup, spark plug geometry and weak tumble gives rise to a weak crossflow toward the intake side of the engine with no swirl, but toward the exhaust side in the presence of strong swirl, skewing the spray slightly to that side.
Technical Paper

LIF Visualization of Liquid Fuel in the Intake Manifold During Cold Start

1995-10-01
952464
Laser induced fluorescence from a dye contained in Unocal RF-A gasoline was excited using 355nm light and the resulting fluorescence imaged (λ>420nm). In order to minimize the changes to the intake geometry the fluorescence was collected by a fiberoptic probe with an articulatible tip. The collected light was imaged onto an intensified CCD camera synchronized with the laser, which was timed to illuminate the intake port after the completion of injection. Cold-starts from 20°C were conducted on an engine dynamometer test stand with two fuel systems: pintle-type port fuel injection, and air-forced port fuel injection. When the injection timing and initial enrichment were optimized the transient emissions from the air-forced system were significantly reduced compared with the conventional system.
Technical Paper

Mixture Preparation Effects on Ignition and Combustion in a Direct-Injection Spark-Ignition Engine

1996-10-01
962013
Planar instantaneous fuel concentration measurements were made by laser-induced fluorescence of 3-pentanone in the spark gap just prior to ignition in a direct-injection spark-ignition engine operating at a light load, highly stratified condition. The distribution of the average equivalence ratio in a circle of 1.9 mm diameter centered on the spark plug showed that a large fraction of the cycles had an equivalence ratio below the lean limit, yet acceptable combustion was achieved in those cycles. Further, weak correlation was found between the local average equivalence ratio near the spark plug and the time required to achieved a 100 kPa pressure rise above the motoring pressure, as well as other parameters which characterize the early stages of combustion. The cause for this behavior is assessed to be mixture motion during the spark discharge which continually convects fresh mixture through the spark gap during breakdown.
Technical Paper

Additive Effects on Atomization and Evaporation of Diesel Fuel Under Engine Conditions

1997-02-24
970795
The objective of this work was to establish whether two detergent-type additives(A and B) influence the drop size and evaporation of two Diesel fuels (1 and 2) under Diesel engine conditions. Two experiments were performed: visualization of liquid and vapor fuel by the exciplex technique in a motored single-cylinder engine and measurement of the Sauter mean diameter, total drop cross sectional area and total drop volume by laser diffraction in a spray chamber. The same Diesel injector and pump system were used in the two experiments. The engine tests were carried out using a high aromatic content fuel (1) particularly suited for the exciplex studies. These studies showed that additive A yielded a lower vapor signal than additive B, which in turn gave a lower vapor signal than untreated fuel. Spray chamber results were obtained for both fuel 1 and 2. Additive A reduced the evaporation of fuel 1 whereas additive B gave a smaller and less consistent affect.
Technical Paper

Cycle-Resolved Velocity and Turbulence Measurements Near the Cylinder Wall of a Firing S.I. Engine

1986-10-01
861530
Laser Doppler velocimetry has been used to make cycle-resolved velocity and turbulence measurements in a homogeneous-charge, spark-ignition engine. The engine had a ported intake and disc-shaped chamber with a compression ratio of 7.5 to 1. It was operated at a speed of 1200 rpm and with a TDC swirl number of 4. A stoichiometric propane-air mixture was used, and ignition was near the wall. Measurements of the tangential velocity component were made in both firing and non-firing cycles at nine spatial locations along a radius 180 degrees downstream of the spark. The radial velocity component was also measured at four of the locations. All measurements were made in the center of the clearance height. Tangential component measurements were made as close as 0.5mm from the cylinder wall, and the radial component was measured as close as 1.5mm from the wall.
Technical Paper

A Study of Velocities and Turbulence Intensities Measured in Firing and Motored Engines

1987-02-01
870453
Laser Doppler velocimetry was used to make cycle-resolved velocity and turbulence measurements under motoring and firing conditions in a ported homogeneous charge S.I. engine. The engine had a flat pancake chamber with a compression ratio of 7.5. In one study, the effect of the intake velocity on TDC turbulence intensity was measured at 600, 1200, and 1800 rpm with three different intake flow rates at each speed. The TDC swirl ratio ranged from 2 to 6. The TDC turbulence intensities were found to be relatively insensitive to the intake velocity, and tended to scale more strongly with engine speed. For the combustion measurements, the engine was operated at 600, 1200, and 2400 rpm on stoichiometric and lean propane-air mixtures. Velocity measurements were made in swirling and non-swirling flows at several spatial locations on the midplane of the clearance height. The TDC swirl ratio was about 4. The measurements were made ahead, through, and behind the flame.
X