Refine Your Search

Topic

Search Results

Journal Article

Numerical Simulations of Noise Induced by Flow in HVAC Ventilation Ducts

2011-04-12
2011-01-0505
Numerical simulations are performed to investigate noise generated by flow in automotive HVAC ducts. A hybrid computational method for analyzing flow noise is applied: Large Eddy Simulation (LES) for predicting flow fields and Multi-domain boundary element method for predicting acoustic propagation. LES gives time-resolved solutions of flow velocity and pressure fields. By applying the acoustic analogy theory, the unsteady flow parameters are translated into sound source in evaluating the acoustic propagation. The computational result shows the noise caused by the HVAC ducts is strong. The noise is of broadband with a peak value at 370Hz. A major contribution of the noise generation is from the center ducts. Two design modifications of the center ducts are explored to regulate the flow structures with the ducts for reducing noise generation. Test results demonstrate the effectiveness of the modifications.
Technical Paper

Reconstruction of Noise Source in a Ducted Fan Using a Generalized Nearfield Acoustical Holography

2010-04-12
2010-01-0416
The identification of the propulsion noise of turbofan engines plays an important role in the design of low-noise aircraft. The noise generation mechanisms of a typical turbofan engine are very complicated and it is not practical, if not impossible, to identify these noise sources efficiently and accurately using numerical or experimental techniques alone. In addition, a major practical concern for the measurement of acoustic pressure inside the duct of a turbofan is the placement of microphones and their supporting frames which will change the flow conditions under normal operational conditions. The measurement of acoustic pressures on the surface of the duct using surface-mounted microphones eliminates this undesirable effect. In this paper, a generalized acoustical holography (GAH) method that is capable of estimating aeroacoustic sources using surface sound pressure is developed.
Technical Paper

Visualization techniques to identify and quantify sources and paths of exterior noise radiated from stationary and nonstationary vehicles

2000-06-12
2000-05-0326
In recent years, Nearfield Acoustical Holography (NAH) has been used to identify stationary vehicle exterior noise sources. However that application has usually been limited to individual components. Since powertrain noise sources are hidden within the engine compartment, it is difficult to use NAH to identify those sources and the associated partial field that combine to create the complete exterior noise field of a motor vehicle. Integrated Nearfield Acoustical Holography (INAH) has been developed to address these concerns: it is described here. The procedure entails sensing the sources inside the engine compartment by using an array of reference microphones, and then calculating the associated partial radiation fields by using NAH. In the second part of this paper, the use of farfield arrays is considered. Several array techniques have previously been applied to identify noise sources on moving vehicles.
Technical Paper

Application of Electric Vehicle System Design to Grand Prix EV Kart

2011-04-12
2011-01-0353
The renewed interest in electric and hybrid-electric vehicles has been prompted by the drastic rise in oil prices in 2008 and launch of new initiatives by the Federal Government. One of the key issues is to promote the incorporation of electric drivetrain in vehicles at all levels and particularly with emphasis on educational activities to prepare the workforce needed for the near future. Purdue University has been conducting a Grand Prix for over 50 years with Gas-powered Karts. In April 2010, an annual event was initiated to hold an EV Grand Prix where 17 EV Karts participated in the competition. Four of the participating teams comprised of Purdue students in a new graduate course for EV design and fabrication. Using the basic framework of the gas-powered Kart, an electric version was developed as a part of this course. Other participants were also provided with the guidelines and design parameters developed for the course and competition.
Technical Paper

Integrity Sensing with Smart Polymers and Rubber Components on Vehicles (i.e. Tires, Hoses, Seals)

2013-04-08
2013-01-0742
This research provides a capacitance based method for monitoring the integrity of tires and other polymeric products during manufacturing and throughout the useful product life. Tire and wheel failures and tire degradation were the reported cause for approximately 19320 vehicle crashes over a two and a half year period according to the U.S. Department of Transportation National Highway Traffic Safety Administration's 2008 survey. Tires are complex composite structures composed of layers of formulated cross-linked rubber, textiles, and steel reinforcement layers. Tire production requires precise manufacturing through chemical and mechanical methods to achieve secure attachment of all layers. Tires are subjected to a variety of harsh environments, experience heavy loads, intense wear, heat, and in many cases lack of maintenance. These conditions make tires extremely susceptible to damage.
Technical Paper

The Use of the Wigner Distribution to Identify Wave-Types in Multi-Element Structures

1993-05-01
931286
In this paper it is shown that time-frequency analysis of a transient structural response may be used to identify the wave-types carrying significant energy through a multi-element structure. The identification of various wave-types is possible since each is characterized by its own dispersion relation, with the result that each wave-type may be associated with characteristic features in the time-frequency domain representation of a structural response. For multi-element structures, propagating energy can be converted from one wave-type to another at the junction of the elements. Consequently, for those structures, the characteristic features in the time-frequency domain consist of the superposition of features associated with propagation in each element. In the work described here, the Wigner Distribution has been used to obtain time-frequency domain representations of structural transient responses.
Technical Paper

Correlation of Tire Intensity Levels and Passby Sound Pressure Levels

1995-05-01
951355
The object of the work reported here was to relate the acoustic intensity level measured near the contact patch of a driven tire on a passenger vehicle with the passby noise levels measured at a sideline microphone during coast and cruise conditions. Based on those measurements it was then possible to estimate the tire noise contribution to the passby level measured when the vehicle under test was accelerating. As part of this testing program, data was collected using five vehicles at fourteen passby sites in the United States: in excess of 800 data sets were obtained.
Technical Paper

Controlling the Water Availability from a Ceramic Tube System Subjected to Non-Standard Gravities

1996-07-01
961505
The Porous Ceramic Tube - Nutrient Delivery System (PCT-NDS) offers means to control water availability to plants under non-standard gravities. It is hypothesized that control can be obtained by applying suction pressure within the ceramic tubes. The research objectives include verifying the presented control equation for the PCT-NDS under micro-(less than 1 g) and hyper- (greater than 1 g) gravities. Experiments were conducted on a KC-135 subjecting the system to near-zero to 2 g's and to sustained hyper-gravities upto 10 g's using a centrifuge. Results indicated that the water availability can be controlled through applied suction pressure.
Technical Paper

Farmers Perspective on Machinery Until 2000

1996-08-01
961853
Farmers are a small group, mostly college educated who run multi-million dollar yearly operations. Recent favorable economics has allowed this sector to look at new technology and determine the best way to invest in it. New considerations in the last few years have led to minimum/alternative tillage and planting, site specific farming decisions and small technology groups of farmers. The authors have put together their thoughts and wants which should be evaluated by future suppliers of technology and farm machinery.
Technical Paper

Particle Image Velocimetry Characterization of a Turbocharger Turbine Inlet Flow

1997-02-24
970343
Modern diesel engines typically utilize pulse-turbocharging where an increase in exhaust gas transport efficiency is achieved at the expense of creating a highly unsteady flow through the turbine which may have a detrimental effect on turbine performance. As the turbocharger plays a major role in the performance and emissions of the engine system, the characterization of on-engine turbocharger aerodynamics is critical. Thus, this paper is directed at the investigation of the turbocharger turbine volute inlet flowfield on an in-line, six cylinder, diesel engine. Specifically, Particle Image Velocimetry (PIV), a quantitative non-intrusive whole flowfield measurement technique, is used to perform a detailed study of the on-engine pulsating flowfield at the volute inlet of the twin-entry turbocharger turbine.
Technical Paper

Active Control of Wind Noise Using Robust Feedback Control

1997-05-20
971891
A feedback controller bas been developed using robust control techniques to control the sound radiated from turbulent flow driven plates. The control design methodology uses frequency domain loop shaping techniques. System uncertainty, sound pressure level reductions, and actuator constraints are included in the design process. For the wind noise problem, weighting factors have been included to distinguish between the importance of modes that radiate sound and those that do not radiate. The wind noise controller has been implemented in the quiet wind tunnel facility at the Ray W. Herrick Laboratories at Purdue University. A multiple-input, multiple-output controller using accelerometer feedback and shaker control was able to achieve control up to 1000 Hz. Sound pressure level reductions of as much as 15 dB were achieved at the frequencies of the plates modes. Overall reductions over the 100-1000 Hz band were approximately 5 dB.
Technical Paper

A Predictive Model for the Interior Pressure Oscillations from Flow Over Vehicle Openings

1997-05-20
971906
An analytical model based on “vortex sound” theory was investigated for predicting the frequency, the relative magnitude, the onset, and the offset of self-sustained interior pressure fluctuations inside a vehicle with an open sunroof. The “buffeting” phenomenon was found to be caused by the flow-excited resonance of the cavity. The model was applied to investigate the optimal sunroof length and width for a mid-size sedan. The input parameters are the cavity volume, the orifice dimensions, the flow velocity, and one coefficient characterizing vortex diffusion. The analytical predictions were compared with experimental results obtained for a system which geometry approximated the one-fifth scale model of a typical vehicle passenger compartment with a rectangular, open sunroof. Predicted and observed frequencies and relative interior pressure levels were in good agreement around the “critical” velocity, at which the cavity response is near resonance.
Technical Paper

Sound Transmission Through Primary Bulb Rubber Sealing Systems

1997-05-20
971903
Structural sound transmission through primary bulb (PB) sealing systems was investigated. A two-degrees-of-freedom analytical model was developed to predict the sound transmission characteristics of a PB seal assembly. Detailed sound transmission measurements were made for two different random excitations: acoustic and aerodynamic. A reverberation room method was first used, whereby a seal sample installed within a test fixture was excited by a diffuse sound field. A quiet flow facility was then used to create aerodynamic pressure fluctuations which acted as the excitation. The space-averaged input pressure within the pseudo door gap cavity and the sound pressure transmitted on the quiescent side of the seal were obtained in each case for different cavity dimensions, seal compression, and seal designs. The sound transmission predictions obtained from the lumped element model were found to be in reasonable agreement with measured values.
Technical Paper

Pressure Fluctuations in a Flow-Excited Door Gap Cavity Model

1997-05-20
971923
The flow-induced pressure fluctuations in a door gap cavity model were investigated experimentally using a quiet wind tunnel facility. The cavity cross-section dimensions were typical of road vehicle door cavities, but the span was only 25 cm. One cavity wall included a primary bulb rubber seal. A microphone array was used to measure the cavity pressure field over a range of flow velocities and cavity configurations. It was found that the primary excitation mechanism was an “edge tone” phenomenon. Cavity resonance caused amplification around discrete frequencies, but did not cause the flow disturbances to lock-on. Possible fluid-elastic coupling related to the presence of a compliant wall was not significant. A linear spectral decomposition method was then used to characterize the cavity pressure in the frequency domain, as the product of a source spectral distribution function and an acoustic frequency response function.
Technical Paper

A Model Study of How Tire Construction and Materials Affect Vibration-Radiated Noise

1997-05-20
972049
A simple mathematical model was developed and experimentally validated to evaluate how the materials and construction of an automobile tire affect its vibration-radiated noise performance. The mathematical model uses Statistical Energy Analysis (SEA) with modal joint acceptance formulations for wavespeed and radiation efficiency of orthotropically-stiffened and pressurized cylindrical shells. Experimental validation of the model included wavenumber decomposition to determine the dispersion characteristics of an inflated, non-rolling tire in the laboratory. The model is used to conduct a preliminary study into how the various tire constituent materials and construction parameters influence the vibration-radiated noise performance.
Technical Paper

Noise Source Identification in Thermal Systems Using Transient Spectral Analysis

1997-05-20
972036
A noise source identification technique for the analysis of thermal systems is presented. The proposed method uses transient spectral sound data to assist in determining the source of sound radiation by tracking the variation of the frequency of tones during transient thermal loading (i.e., thermal system warm-up). By considering the temperature dependence of the modulus of elasticity (Young's modulus) it can be shown that structure related tones will decrease in frequency during warm-up. Tones due to propagation of sound in many fluids (i.e., gases and water) will increase in frequency during warm-up due to the temperature dependence of the speed of sound. The analysis method is demonstrated by identifying the source of several noise tones for a pulse combustion furnace.
Technical Paper

On-Engine Turbocharger Turbine Inlet Flow Characterization

1997-04-01
971565
Increased power and fuel efficiency requirements ofmodern vehicle diesel engines have lead to wide pread use of turbocharging to increase engine power-to-weight ratio. Typically, these systems employ pulse-turbocharging where an increase in exhaust gas transport efficiency is achieved at the expense of creating a highly unsteady flow through the turbine. This imposed unsteadiness is known to have a significant effect on turbine performance. To date, research performed to quantify the effects of exhaust pulsations on the performance of radial turbocharger turbines has been performed in off-engine facilities which simulate the engine manifold conditions. However, to better gauge the applicability of these data, a detailed investigation into the actual on-engine turbocharger operating environment is required. Research at Purdue University is focused on the characterization of the nature of the on-engine turbine operating environment and how it relates to turbocharger performance.
Technical Paper

Characterization and Modeling of Turbocharger Dynamic Performance

1997-04-01
971566
The range of applications of heavy duty diesel engines is quite diverse. The development of diesel engines has been characterized by a steady increase in power to weight ratios, with the turbocharger being the key component in achieving this increased performance. The turbocharger, consisting of a radial or axial flow turbine and a radial flow compressor, presents perhaps one of the most challenging tasks facing the turbomachinery designer. This is, to a p a t extent, due to the highly unsteady environment in which the turbocharger operates. The time scales of this unsteadiness range fiom those on the order of exhaust valve frequency to those associated with transient operation during acceleration and deceleration. In order to predict the time-accurate performance of the turbocharger in this environment, a range of dynamic models can be envisioned spanning the range from quasi-steady assumptions to full viscous flow solvers.
Technical Paper

Optimization of Natural Gas Engine Performance by Multidimensional Modeling

1997-04-01
971567
Multidimensional numerical simulations are performed to predict and optimize engine performance of a spark-ignited natural gas engine. The effects of swirl and combustion chamber geometry on in-cylinder turbulence intensity, burning rate and heat transfer are investigated using the KIVA multidimensional engine simulation computer code. The original combustion model in the KIVA code has been replaced by a model which was recently developed to predict natural gas turbulent combustion under engine-like conditions. Measurements from a constant volume combustion chamber and engine test data have been used to calibrate the combustion model. With the numerical results from KIVA code engine thermal efficiencies were predicted by the thermodynamics based WAVE code. The numerical results suggest alternative combustion chamber designs and an optimum swirl range for increasing engine thermal efficiency.
Technical Paper

Computer Controlled Hydraulics — A Combine Application

1980-09-01
801019
The feasibility of controlling the threshing cylinder of a conventional corn combine with electro hydraulic elements controlled by a digital computer was concluded. The laboratory experiments attained the performance index established after consultation with manufacturers and farmers
X