Refine Your Search

Topic

Search Results

Viewing 1 to 15 of 15
Journal Article

Numerical Simulations of Noise Induced by Flow in HVAC Ventilation Ducts

2011-04-12
2011-01-0505
Numerical simulations are performed to investigate noise generated by flow in automotive HVAC ducts. A hybrid computational method for analyzing flow noise is applied: Large Eddy Simulation (LES) for predicting flow fields and Multi-domain boundary element method for predicting acoustic propagation. LES gives time-resolved solutions of flow velocity and pressure fields. By applying the acoustic analogy theory, the unsteady flow parameters are translated into sound source in evaluating the acoustic propagation. The computational result shows the noise caused by the HVAC ducts is strong. The noise is of broadband with a peak value at 370Hz. A major contribution of the noise generation is from the center ducts. Two design modifications of the center ducts are explored to regulate the flow structures with the ducts for reducing noise generation. Test results demonstrate the effectiveness of the modifications.
Technical Paper

Reconstruction of Noise Source in a Ducted Fan Using a Generalized Nearfield Acoustical Holography

2010-04-12
2010-01-0416
The identification of the propulsion noise of turbofan engines plays an important role in the design of low-noise aircraft. The noise generation mechanisms of a typical turbofan engine are very complicated and it is not practical, if not impossible, to identify these noise sources efficiently and accurately using numerical or experimental techniques alone. In addition, a major practical concern for the measurement of acoustic pressure inside the duct of a turbofan is the placement of microphones and their supporting frames which will change the flow conditions under normal operational conditions. The measurement of acoustic pressures on the surface of the duct using surface-mounted microphones eliminates this undesirable effect. In this paper, a generalized acoustical holography (GAH) method that is capable of estimating aeroacoustic sources using surface sound pressure is developed.
Technical Paper

Application of Electric Vehicle System Design to Grand Prix EV Kart

2011-04-12
2011-01-0353
The renewed interest in electric and hybrid-electric vehicles has been prompted by the drastic rise in oil prices in 2008 and launch of new initiatives by the Federal Government. One of the key issues is to promote the incorporation of electric drivetrain in vehicles at all levels and particularly with emphasis on educational activities to prepare the workforce needed for the near future. Purdue University has been conducting a Grand Prix for over 50 years with Gas-powered Karts. In April 2010, an annual event was initiated to hold an EV Grand Prix where 17 EV Karts participated in the competition. Four of the participating teams comprised of Purdue students in a new graduate course for EV design and fabrication. Using the basic framework of the gas-powered Kart, an electric version was developed as a part of this course. Other participants were also provided with the guidelines and design parameters developed for the course and competition.
Technical Paper

The Use of the Wigner Distribution to Identify Wave-Types in Multi-Element Structures

1993-05-01
931286
In this paper it is shown that time-frequency analysis of a transient structural response may be used to identify the wave-types carrying significant energy through a multi-element structure. The identification of various wave-types is possible since each is characterized by its own dispersion relation, with the result that each wave-type may be associated with characteristic features in the time-frequency domain representation of a structural response. For multi-element structures, propagating energy can be converted from one wave-type to another at the junction of the elements. Consequently, for those structures, the characteristic features in the time-frequency domain consist of the superposition of features associated with propagation in each element. In the work described here, the Wigner Distribution has been used to obtain time-frequency domain representations of structural transient responses.
Technical Paper

Correlation of Tire Intensity Levels and Passby Sound Pressure Levels

1995-05-01
951355
The object of the work reported here was to relate the acoustic intensity level measured near the contact patch of a driven tire on a passenger vehicle with the passby noise levels measured at a sideline microphone during coast and cruise conditions. Based on those measurements it was then possible to estimate the tire noise contribution to the passby level measured when the vehicle under test was accelerating. As part of this testing program, data was collected using five vehicles at fourteen passby sites in the United States: in excess of 800 data sets were obtained.
Technical Paper

Controlling the Water Availability from a Ceramic Tube System Subjected to Non-Standard Gravities

1996-07-01
961505
The Porous Ceramic Tube - Nutrient Delivery System (PCT-NDS) offers means to control water availability to plants under non-standard gravities. It is hypothesized that control can be obtained by applying suction pressure within the ceramic tubes. The research objectives include verifying the presented control equation for the PCT-NDS under micro-(less than 1 g) and hyper- (greater than 1 g) gravities. Experiments were conducted on a KC-135 subjecting the system to near-zero to 2 g's and to sustained hyper-gravities upto 10 g's using a centrifuge. Results indicated that the water availability can be controlled through applied suction pressure.
Technical Paper

Farmers Perspective on Machinery Until 2000

1996-08-01
961853
Farmers are a small group, mostly college educated who run multi-million dollar yearly operations. Recent favorable economics has allowed this sector to look at new technology and determine the best way to invest in it. New considerations in the last few years have led to minimum/alternative tillage and planting, site specific farming decisions and small technology groups of farmers. The authors have put together their thoughts and wants which should be evaluated by future suppliers of technology and farm machinery.
Technical Paper

Active Control of Wind Noise Using Robust Feedback Control

1997-05-20
971891
A feedback controller bas been developed using robust control techniques to control the sound radiated from turbulent flow driven plates. The control design methodology uses frequency domain loop shaping techniques. System uncertainty, sound pressure level reductions, and actuator constraints are included in the design process. For the wind noise problem, weighting factors have been included to distinguish between the importance of modes that radiate sound and those that do not radiate. The wind noise controller has been implemented in the quiet wind tunnel facility at the Ray W. Herrick Laboratories at Purdue University. A multiple-input, multiple-output controller using accelerometer feedback and shaker control was able to achieve control up to 1000 Hz. Sound pressure level reductions of as much as 15 dB were achieved at the frequencies of the plates modes. Overall reductions over the 100-1000 Hz band were approximately 5 dB.
Technical Paper

A Predictive Model for the Interior Pressure Oscillations from Flow Over Vehicle Openings

1997-05-20
971906
An analytical model based on “vortex sound” theory was investigated for predicting the frequency, the relative magnitude, the onset, and the offset of self-sustained interior pressure fluctuations inside a vehicle with an open sunroof. The “buffeting” phenomenon was found to be caused by the flow-excited resonance of the cavity. The model was applied to investigate the optimal sunroof length and width for a mid-size sedan. The input parameters are the cavity volume, the orifice dimensions, the flow velocity, and one coefficient characterizing vortex diffusion. The analytical predictions were compared with experimental results obtained for a system which geometry approximated the one-fifth scale model of a typical vehicle passenger compartment with a rectangular, open sunroof. Predicted and observed frequencies and relative interior pressure levels were in good agreement around the “critical” velocity, at which the cavity response is near resonance.
Technical Paper

Sound Transmission Through Primary Bulb Rubber Sealing Systems

1997-05-20
971903
Structural sound transmission through primary bulb (PB) sealing systems was investigated. A two-degrees-of-freedom analytical model was developed to predict the sound transmission characteristics of a PB seal assembly. Detailed sound transmission measurements were made for two different random excitations: acoustic and aerodynamic. A reverberation room method was first used, whereby a seal sample installed within a test fixture was excited by a diffuse sound field. A quiet flow facility was then used to create aerodynamic pressure fluctuations which acted as the excitation. The space-averaged input pressure within the pseudo door gap cavity and the sound pressure transmitted on the quiescent side of the seal were obtained in each case for different cavity dimensions, seal compression, and seal designs. The sound transmission predictions obtained from the lumped element model were found to be in reasonable agreement with measured values.
Technical Paper

Pressure Fluctuations in a Flow-Excited Door Gap Cavity Model

1997-05-20
971923
The flow-induced pressure fluctuations in a door gap cavity model were investigated experimentally using a quiet wind tunnel facility. The cavity cross-section dimensions were typical of road vehicle door cavities, but the span was only 25 cm. One cavity wall included a primary bulb rubber seal. A microphone array was used to measure the cavity pressure field over a range of flow velocities and cavity configurations. It was found that the primary excitation mechanism was an “edge tone” phenomenon. Cavity resonance caused amplification around discrete frequencies, but did not cause the flow disturbances to lock-on. Possible fluid-elastic coupling related to the presence of a compliant wall was not significant. A linear spectral decomposition method was then used to characterize the cavity pressure in the frequency domain, as the product of a source spectral distribution function and an acoustic frequency response function.
Technical Paper

Computer Controlled Hydraulics — A Combine Application

1980-09-01
801019
The feasibility of controlling the threshing cylinder of a conventional corn combine with electro hydraulic elements controlled by a digital computer was concluded. The laboratory experiments attained the performance index established after consultation with manufacturers and farmers
Technical Paper

Slip Resistance Predictions for Various Metal Step Materials, Shoe Soles and Contaminant Conditions

1987-11-01
872288
The relationship of slip resistance (or coefficient of friction) to safe climbing system maneuvers on high profile vehicles has become an issue because of its possible connection to falls of drivers. To partially address this issue, coefficients of friction were measured for seven of the more popular fabricated metal step materials. Evaluated on these steps were four types of shoe materials (crepe, leather, ribbed-rubber, and oil-resistant-rubber) and three types of contaminant conditions (dry, wet-water, and diesel fuel). The final factor evaluated was the direction of sole force application. Results showed that COF varied primarily as a function of sole material and the presence of contaminants. Unexpectedly, few effects were attributible to the metal step materials. Numerous statistical interactions suggested that adequate levels of COF are more likely to be attained by targeting control on shoe soles and contaminants rather than the choice of a particular step material.
Technical Paper

Control of Interior Pressure Fluctuations Due to Flow Over Vehicle Openings

1999-05-17
1999-01-1813
Grazing flows over open windows or sunroofs may result in “flow buffeting,” i.e. self-sustained flow oscillations at the Helmholtz acoustic resonance frequency of the vehicle. The associated pressure fluctuations may cause passenger fatigue and discomfort. Many solutions have been proposed to solve this problem, including for example leading edge spoilers, trailing edge deflectors, and leading edge flow diffusers. Most of these control devices are “passive” i.e. they do not involve dynamic control systems. Active control methods, which do require dynamic controls, have been implemented with success for different cases of flow instabilities. Previous investigations of the control of flow-excited cavity resonance have used mainly one or more loudspeakers located within the cavity wall. In this study, oscillated spoilers hinged near the leading edge of the cavity orifice were used. Experiments were performed using a cavity installed within the test section wall of a wind tunnel.
Technical Paper

A Steer-by-Wire System that Enables Remote and Autonomous Operation

2014-09-30
2014-01-2404
Original equipment manufacturers and their customers are demanding more efficient, lighter, smaller, safer, and smarter systems across the entire product line. In the realm of automotive, agricultural, construction, and earth-moving equipment industries, an additional highly desired feature that has been steadily trending is the capability to offer remote and autonomous operation. With the previous requirements in mind, the authors have proposed and validated a new electrohydraulic steering technology that offers energy efficiency improvement, increased productivity, enhanced safety, and adaptability to operating conditions. In this paper, the authors investigate the new steering technology's capacity to support remote operation and demonstrate it on a compact wheel loader, which can be remotely controlled without an operator present behind the steering wheel. This result establishes the new steer-by-wire technology's capability to enable full autonomous operation as well.
X