Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Lightweight Automobiles ALLIANCE Project: First Results of Environmental and Economic Assessment from a Life-Cycle Perspective

2018-05-30
2018-37-0027
In the last years the research activities in the field of lightweighting have been advancing rapidly. The introduction of innovative materials and manufacturing technologies has allowed significant weight reduction. Despite this, novel technologies and materials have not reached a wide distribution. The reasons for this are mainly high production costs and environmental impacts of manufacturing that do not compensate benefits during operation. The paper deals with the AffordabLe LIghtweight Automobiles AlliaNCE (ALLIANCE) project which has the goal of developing novel advanced automotive materials and production technologies, aiming at an average 25% weight reduction over 100 k units/year, at costs of <3 €/kg. The article is focussed on Work Package 1 (WP1) of the project, aimed at estimating the full attributes of innovative design solutions by assessing costs, energy demand and GWP over the entire vehicle Life Cycle (LC).
Technical Paper

Borderline Design of Crankshafts Based on Hybrid Simulation Technology

2009-06-15
2009-01-1918
This paper introduces different modeling approaches of crankshafts, compares the refinement levels and discusses the difference between the results of the crankshaft durability calculation methodologies. A V6 crankshaft is considered for the comparison of the refinement levels depending on the deviation between the signals such as main bearing forces and deflection angle. Although a good correlation is observed between the results in low speed range, the deviation is evident through the mid to high speed ranges. The deviation amplitude differs depending on the signal being observed and model being used. An inline 4 crankshaft is considered for the comparison of the durability results. The analysis results show that the durability potential is underestimated with a classical crankshaft calculation approach which leads to a limitation of maximum speed of 5500 rpm.
Technical Paper

Simulating and Reducing Noise Excited in an EV Powertrain by a Switched Reluctance Machine

2014-06-30
2014-01-2069
The noise performance of fully electric vehicles is essential to ensure that they gain market acceptance. This can be a challenge for several reasons. Firstly, there is no masking from the internal combustion engine. Next, there is pressure to move to cost-efficient motor designs such as Switched Reluctance Motors, which have worse vibro-acoustic behaviour than their Permanent Magnet counterparts. Finally, power-dense, higher speed motors run closer fundamental frequency to the structural resonances of the system [1]. Experience has shown that this challenge is frequently not met. Reputable suppliers have designed and developed their “quiet” subsystems to state of the art levels, only to discover that the assembled E-powertrain is unacceptably noisy. The paper describes the process and arising results for the noise simulation of the complete powertrain.
Technical Paper

Multi-Domain Modelling of 3 Phase Voltage Source Converters in Modelica Language

2016-09-20
2016-01-2029
This paper will present a multi-domain (electrical and thermal) model of a three phase voltage source converter and its implementation in Modelica language. An averaged model is utilised for the electrical domain, and a power balance method is used for linking the DC and AC sides. The thermal domain focuses in deriving the converter losses by deriving the analytical equations of the space vector modulation to derive a function for the duty cycle of each converter leg. With this, the conduction and switching losses are calculated for the individual switches and diodes, without having to model their actual switching behaviour. The model is very fast to simulate, as no switching events are needed, and allows obtaining the simulation of the electrical and thermal behaviour in the same simulation package..
Technical Paper

Arttest – a New Test Environment for Model-Based Software Development

2017-03-28
2017-01-0004
Modern vehicles become increasingly software intensive. Software development therefore is critical to the success of the manufacturer to develop state of the art technology. Standards like ISO 26262 recommend requirement-based verification and test cases that are derived from requirements analysis. Agile development uses continuous integration tests which rely on test automation and evaluation. All these drove the development of a new model-based software verification environment. Various aspects had to be taken into account: the test case specification needs to be easily comprehensible and flexible in order to allow testing of different functional variants. The test environment should support different use cases like open-loop or closed-loop testing and has to provide corresponding evaluation methods for continuously changing as well as for discrete signals.
Journal Article

Tomographic Particle-Image Velocimetry Analysis of In-Cylinder Flows

2015-06-01
2015-01-9042
New combustion processes require an understanding of the highly three-dimensional flow field to effectively decrease fuel consumption and pollutant emission. Due to the complex spatial character of the flow the knowledge of the development of the flow in an extended volume is necessary. Previous investigations were able to visualize the discrete three-dimensional flow field through multi-plane stereoscopic PIV. In this study, cycle resolved tomographic particle-image velocimetry measurement have been performed to obtain a fully resolved representation of the three-dimensional flow structures at each instant. The analysis is based on the measurements at 80°, 160°, and 240° after top dead center(atdc) such that the velocity distributions at the intake, the end of the intake, and the compression stroke at an engine speed of 1,500 rpm are discussed in detail.
X