Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Optimum Diesel Fuel for Future Clean Diesel Engines

2007-01-23
2007-01-0035
Over the next decades to come, fossil fuel powered Internal Combustion Engines (ICE) will still constitute the major powertrains for land transport. Therefore, their impact on the global and local pollution and on the use of natural resources should be minimized. To this end, an extensive fundamental and practical study was performed to evaluate the potential benefits of simultaneously co-optimizing the system fuel-and-engine using diesel as an example. It will be clearly shown that the still unused co-optimizing of the system fuel-and-engine (including advanced exhaust after-treatment) as a single entity is a must for enabling cleaner future road transport by cleaner fuels since there are large, still unexploited potentials for improvements in road fuels which will provide major reductions in pollutant emissions both in vehicles already in the field and even more so in future dedicated vehicles.
Technical Paper

A Study of the Effects of 30% Biodiesel Fuel on Soot Loading and Regeneration of a Catalytic DPF

2007-07-23
2007-01-2023
Biofuels are a renewable energy source. When used as extenders for transportation fuels, biofuels contribute to the global reduction of Green House Gas and CO2 emissions from the transport sector and to security and independence of energy supply. On a “Well to Wheel” basis they are much more CO2 efficient than conventional fossil fuels. All vehicles currently in circulation in Europe are capable of using 5 % biodiesel. The introduction of higher percentages biodiesel needs new specific standards and vehicle tests validation. The development of vehicles compatible with 30% biodiesel blends in diesel fuel includes the validation of each part of both engine and fuel vehicle systems to guarantee normal operation for the entire life of the vehicle.
Technical Paper

Fuel Additive Performance Evaluation for Volume Production Application of a Diesel Particulate Filter

2001-03-05
2001-01-1286
Diesel particulate filter (DPF) technology is becoming increasingly established as a practical method for control of particulate emissions from diesel engines. In the year 2000, production vehicles with DPF systems, using metallic fuel additive to assist regeneration, became available in Europe. These early examples of first generation DPF technology are forerunners of more advanced systems likely to be needed by many light-duty vehicles to meet Euro IV emissions legislation scheduled for 2005. Aspects requiring attention in second generation DPF systems are a compromise between regeneration kinetics and ash accumulation. The DPF regeneration event is activated by fuel injection, either late in the combustion cycle (late injection), or after normal combustion (post injection), leading to increased fuel consumption. Therefore for optimum fuel economy, the duration of regeneration and/or the soot ignition temperature must be minimised.
Technical Paper

Non-Thermal Plasma Assisted Catalytic NOx Remediation from a Lean Model Exhaust

2001-09-24
2001-01-3508
No efficient catalyst presently exists for deNOx in lean burn conditions. Furthermore, actual catalysts generally deactivate during reaction. A cylindrical DBD non-thermal plasma reactor was coupled with a stable three-function catalyst in order to verify the nature of the effect of the plasma on the catalytic process. A mixture of NO/O2/C3H6 in N2 was used as a lean model exhaust. The plasma was found to perform two of the three functions: NO oxidation to NO2 and propene activation through the partial oxidation of the hydrocarbon to aldehyde or alcohol. A complete catalyst containing the first two previous functions and the associative chemisorption of NO (third function) was used, as well as a simplified catalyst containing only the third function. Results suggest an advantageous plasma-catalyst coupling effect on NOx remediation in accordance with the proposed catalytic model.
Technical Paper

A Validated Numerical Simulation of Diesel Injector Flow Using a VOF Method

2000-10-16
2000-01-2932
Progress in Diesel spray modelling highly depends on a better knowledge of the instantaneous injection velocity and of the hydraulic section at the exit of each injection hole. Additionally a better identification of the mechanisms which cause fragmentation is needed. This necessitates to begin with a precise computation of the two-phase flow which arises due to the presence of cavitation within the injectors. For that aim, a VOF type interface tracking method has been developed and improved (Segment Lagrangian VOF method) which allows to describe numerically the onset and development of cavitation within Diesel injectors. Furthermore, experiments have been performed for validation purpose, on transparent one-hole injectors for high pressure injection conditions. Two different entrance geometries (straight and rounded) and various upstream and downstream pressure levels have been considered.
Technical Paper

Maximum Electrical Energy Availability With Reasonable Components

2000-11-01
2000-01-C071
The electric power required in automotive systems is quickly reaching a level that significantly impacts costs and fuel consumption. This drives the need to reconsider an electric energy management function. Fast evolving factors such as increasing power usage, and stricter engine management and reliability requirements necessitate a global vehicle approach to energy management. Innovations such as new powernet concepts (42 volt or dual voltage systems), new component technologies (high-performance energy storage, high efficiency and controllable generators), and global electronic and software architecture concepts will enable this new energy management concept. This paper describes key issues to maximize energy availability with reasonable components.
Technical Paper

Multi-Fuel Fuel Processor and PEM Fuel Cell System for Vehicles

2007-04-16
2007-01-0692
An ongoing program has made further technology advances in onboard fuel processors for use with PEM fuel cells. These systems are being explored as an option for reducing vehicle CO2 emissions and for other benefits such as fuel-flexibility that would allow vehicles to operate on a range of bio-fuels, conventional fuels, and synthetic fuels to support diversification and/or “greening” of the fuel supply. As presented at the 2006 SAE World Congress1, Renault and Nuvera Fuel Cells previously developed fuel processor technology that achieved automotive size (80 liters) and power (1.4 g/s of hydrogen production) and reduced the startup time from more than 60 minutes to between 1.4 and 3.7 minutes to have CO <100 ppm. This paper presents an overview of the multi-fuel fuel cell power plant along with advances in the fuel processing system (FPS) technology and the testing results obtained since those reported in 2006.
Technical Paper

Light Weight Engine Construction through Extended and Sustainable Use of Mg-Alloys

2006-04-03
2006-01-0068
Eight partners from Europe and one from North America have joined efforts in a EU-supported project to find new ways for sustainable production of Mg-based engine blocks for cars. The ultimate aim of the work is to reduce vehicle weight, thereby reducing fuel consumption and CO2 emissions from operation of the vehicle. Four new magnesium alloys are considered in the project and an engine block has been series cast - 20 each in two alloys. An extensive mechanical testing program has been initiated to identify in particular the high temperature limits of the four alloys and a significant experimental study of proper bolt materials for joining is being done in parallel. Engine redesign and life cycle analysis has also been completed to secure the future sustainable exploitation of the project results. This paper presents an overview of the work and results obtained until now - 3 months before the ending date of the project.
Technical Paper

French Program on the Impact of Engine Technology on Particulate Emissions, Size Distribution and Composition Heavy Duty Diesel Study

2005-04-11
2005-01-0190
An extensive research program involving the French passenger car and heavy-duty (HD) vehicles manufacturers, sponsored by ADEME and realized by IFP, aimed to characterize in terms of size and composition the particulate emitted by the different engine technologies currently or soon available. The impact of engine settings and fuel composition was also studied. Numerous information was collected in this HD study revealing that fuel composition and particularly non-conventional fuels and engine settings strongly impact the particulate concentration and size distribution. Nucleation is likely to occur when there is less adsorption matter, for instance when post-injection is used or EGR is removed. Particulate composition, particularly PAH and sulfates content, is weakly bound to the size. Mineral elements distribution depends on their origin, lubrication oil or engine wear.
Technical Paper

Applying Quasi-Multiphase Model to Simulate Atomization Processes in Diesel Engines: Modeling of the Slip Velocity

2005-04-11
2005-01-0220
Atomizing systems must be able to form sprays with predetermined characteristics. There are affected by the shape of the injector as well as external conditions. Thus, in order to avoid numerous experiments, this is necessary to develop predictive atomization models able to deal with the complete atomization process. This can be done using a Eulerian model for primary break-up. This approach describes the flow continuously from inside the injector to the dispersed spray region. In this paper the Eulerian multiphase approach and the Eulerian single-phase approach are compared and the results lead to an intermediate quasi-multiphase approach for describing the spray core. Finally a transition zone permits to represent the diluted spray region by using the classical Lagrangian approach to benefit of the experience accumulated on this method, in particular for the vaporization and the combustion.
Technical Paper

Progress in Diesel HCCI Combustion Within the European SPACE LIGHT Project

2004-06-08
2004-01-1904
The purpose of the European « SPACE LIGHT » (Whole SPACE combustion for LIGHT duty diesel vehicles) 3-year project launched in 2001 is to research and develop an innovative Homogeneous internal mixture Charged Compression Ignition (HCCI) for passenger cars diesel engine where the combustion process can take place simultaneously in the whole SPACE of the combustion chamber while providing almost no NOx and particulates emissions. This paper presents the whole project with the main R&D tasks necessary to comply with the industrial and technical objectives of the project. The research approach adopted is briefly described. It is then followed by a detailed description of the most recent progress achieved during the tasks recently undertaken. The methodology adopted starts from the research study of the in-cylinder combustion specifications necessary to achieve HCCI combustion from experimental single cylinder engines testing in premixed charged conditions.
Technical Paper

Well-to-Wheels Analysis of Future Automotive Fuels and Powertrains in the European Context

2004-06-08
2004-01-1924
A consortium of CONCAWE, EUCAR and the EU Commission's JRC carried out a Well-to-Wheels analysis of a wide range of automotive fuels and powertrains. The study gives an assessment of the energy consumption and greenhouse gas emissions for each pathway. It also considers macroeconomic costs and the market potential of alternative fuels.
Technical Paper

Impact of Gasoline RON and MON on a Turbocharged MPI SI Engine Performances

2004-06-08
2004-01-2001
This paper presents a combustion study of gasoline anti-knock quality effects on turbocharged MPI SI engine performances. A comparative analysis between many fuels covering various Research Octane Number (RON), Motor Octane Number (MON) and sensitivity (RON-MON) is described. The study was conducted on steady state test bench, using a four cylinder 2 L engine. In turbocharged gasoline engines, knock resistance is more than ever a crucial issue to achieve high performance and good customer's consumption level. Octane level is therefore a fuel key parameter. Considering thermodynamic aspects of such combustion at full load, performances, fuel consumption and engine thermal strains are evaluated for each tested fuel. An important influence of RON at iso sensitivity was observed. Because of the extreme conditions met on turbocharged gasoline engine, the impact of RON is exacerbated on such engine and illustrates the great benefits of an increase RON fuel.
Technical Paper

System Approach for NOx Reduction: Double LNT Diesel After-Treatment Architecture

2011-04-12
2011-01-1300
This paper presents an after-treatment architecture combining a close coupled NOx trap and an under floor NOx trap. Instead of simply increasing the volume of the catalyst, we propose to broaden the active temperature window by splitting the LNT along the exhaust line. In order to design this architecture, a complete 1D model of NOx trap has been developed. Validated with respect to experimental data, this model has been useful to define the two volumes of LNT, making significant savings on the test bench exploitation. However, one of the main difficulties to operate the proposed architecture is the NOx purge and sulfur poisoning management. In order to optimize the NOx and sulfur purge launches, we have developed a control strategy based on an embedded reduced LNT model. These strategies have been validated on different driving cycles, by the means of simulation and of vehicle tests using rapid prototyping tools.
Technical Paper

Direct Injection of CNG on High Compression Ratio Spark Ignition Engine: Numerical and Experimental Investigation

2011-04-12
2011-01-0923
CNG is one of the most promising alternate fuels for passenger car applications. CNG is affordable, is available worldwide and has good intrinsic properties including high knock resistance and low carbon content. Usually, CNG engines are developed by integrating CNG injectors in the intake manifold of a baseline gasoline engine, thereby remaining gasoline compliant. However, this does not lead to a bi-fuel engine but instead to a compromised solution for both Gasoline and CNG operation. The aim of the study was to evaluate the potential of a direct injection spark ignition engine derived from a diesel engine core and dedicated to CNG combustion. The main modification was the new design of the cylinder head and the piston crown to optimize the combustion velocity thanks to a high tumble level and good mixing. This work was done through computations. First, a 3D model was developed for the CFD simulation of CNG direct injection.
Technical Paper

Fatigue Analysis of Conrod Bearing

2011-04-12
2011-01-0197
For many years, bearing suppliers have been using the specific pressure to evaluate the fatigue risk of conrod bearings. However, modern engines have made the bearing more sensitive to various phenomena such as the thermal expansion or the elasticity of the conrod housing. These effects modify the stresses in the bearing layers and consequently fatigue risk. In this paper, we propose a new way to determine the bearing fatigue resistance. To achieve that, we analyze the elastic and plastic behavior of the bearing along the engine life. We detail and provide the analytical relationships which determine stresses in the overlay and in the substrate of the bearing in order to analyze their fatigue resistance. Various physical loads are taken into account such as the thermal load, the hydrodynamic pressure field, the fitting load, the free spread load. A good knowledge of the relationships between those physical phenomena helps to understand the mechanical behavior of the bearing.
Technical Paper

A Physical 0D Combustion Model Using Tabulated Chemistry with Presumed Probability Density Function Approach for Multi-Injection Diesel Engines

2010-05-05
2010-01-1493
This paper presents a new 0D phenomenological approach to predict the combustion process in diesel engines operated under various running conditions. The aim of this work is to develop a physical approach in order to improve the prediction of in-cylinder pressure and heat release. The main contribution of this study is the modeling of the premixed part of the diesel combustion with a further extension of the model for multi-injection strategies. In phenomenological diesel combustion models, the premixed combustion phase is usually modeled by the propagation of a turbulent flame front. However, experimental studies have shown that this phase of diesel combustion is actually a rapid combustion of part of the fuel injected and mixed with the surrounding gas. This mixture burns quasi instantaneously when favorable thermodynamic conditions are locally reached. A chemical process then controls this combustion.
Technical Paper

Advanced Onboard Fuel Processor for PEM Fuel Cell Vehicles

2006-04-03
2006-01-0216
To reduce greenhouse gas emissions such as CO2, automakers are actively pursuing alternative propulsion systems. Improvements to current engine technology are being investigated along with new power plant technologies. Fuel Cell Vehicles offer an exciting option by producing electric power through a reaction that combines hydrogen and oxygen to make water. However, hydrogen storage onboard vehicles and construction of an expensive hydrogen distribution and fueling infrastructure remain as challenges today. In addition, greenhouse gas emissions from the production of hydrogen must be considered since most hydrogen is currently produced from non-renewable sources. While these issues are being worked on, Renault has chosen to pursue a fuel cell vehicle with a fuel processor that converts gasoline and other liquid fuels to hydrogen onboard the vehicle.
Technical Paper

Applicability of Large Eddy Simulation to the Fluid Mechanics in a Real Engine Configuration by Means of an Industrial Code

2006-04-03
2006-01-1194
3D simulations of internal combustion engines are usually based on statistical approaches (RANS) that may not allow predicting cycle-to-cycle variations (CCV) or transient speeds because part of this information is lost by the averaging procedure. To simulate such phenomena, it requires time resolved approaches. Therefore, large eddy simulation (LES), which only involves a spatial averaging, appears to be a very promising tool. An LES approach is applied to simulate the flow field inside one cylinder taken from a real four-valve diesel engine mounted on an experimental particle image velocimetry (PIV) bench. Preliminary tests are carried out to evaluate the industrial code capabilities. A multi-cycle calculation is computed in cold flow, in order to evaluate its ability to simulate cycle-to-cycle variations (CCV).
Technical Paper

Analysis of Systematic Calibration of Heat Transfer Models on a Turbocharged GDI Engine Operating Map

2018-04-03
2018-01-0787
In order to simulate the working process, an accurate description of heat transfer occurring between in-cylinder gases and combustion chamber walls is required, especially regarding thermal efficiency, combustion and emissions, or cooling strategies. Combustion chamber wall heat transfer models are dominated by zero-dimensional semi-empirical models due to their good compromise between accuracy, complexity and computational efficiency. Classic models such as those from Woschni, Annand or Hohenberg are still widely used, despite having been developed on rather ancient engines. While numerous authors have worked on this topic in the past decades, little information can be found concerning the systematic calibration process of heat transfer models. In this paper, a systematic calibration method based on experimental data processing is tested on the complete operating map of a turbocharged GDI engine.
X