Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

COTS Engine Conversion

2011-04-12
2011-01-0122
Modern heavy duty Commercial Off The Shelf (COTS) diesel engines represent the state of the art in engine performance and design features, control architecture, and the use of light weight high strength materials. These engines, with appropriate adaptation for operation on military fuels, make excellent choices for defense applications. This paper reviews the selection and modification of a COTS engine suitable for potential defense applications. Considerations for robust operation of the engine on JP8, engine system modifications appropriate for military vehicle emission requirements, reduction of engine system heat rejection, and optimization of engine efficiency will be discussed using example data from converting a 2011 model year COTS engine for defense applications. This work was funded by the Tank Automotive Research, Development and Engineering Center (TARDEC) from Broad Agency Announcement (BAA) Topic 15, awarded in 2009.
Journal Article

Dedicated GTL Vehicle: A Calibration Optimization Study

2010-04-12
2010-01-0737
GTL (Gas-To-Liquid) fuel is well known to improve tailpipe emissions when fuelling a conventional diesel vehicle, that is, one optimized to conventional fuel. This investigation assesses the additional potential for GTL fuel in a GTL-dedicated vehicle. This potential for GTL fuel was quantified in an EU 4 6-cylinder serial production engine. In the first stage, a comparison of engine performance was made of GTL fuel against conventional diesel, using identical engine calibrations. Next, adaptations enabled the full potential of GTL fuel within a dedicated calibration to be assessed. For this stage, two optimization goals were investigated: - Minimization of NOx emissions and - Minimization of fuel consumption. For each optimization the boundary condition was that emissions should be within the EU5 level. An additional constraint on the latter strategy required noise levels to remain within the baseline reference.
Journal Article

Modeling and Analysis of Valve Train, Part I - Conventional Systems

2010-04-12
2010-01-1198
In recent years, computer simulations gained an increased role in the design, development, optimization, and calibration of the valve train systems. With the development of non-conventional systems and actuation mechanisms, computer modeling became even more important. Part I of this article presents an overview of the current modeling and simulation methods of conventional valve trains at component and system level. First, the modeling of the valve train kinematics, including cam shape design and optimization, is summarized. Mathematical modeling of the valve spring, hydraulic lash adjuster, oil aeration, bulk modulus, contact stiffness and contact damping in multibody systems are discussed. The benefits and limitations of the different modeling approaches of the valve train dynamics are pointed out. Another important aspect is the valve train tribology.
Journal Article

Development of the Combustion System for a Flexible Fuel Turbocharged Direct Injection Engine

2010-04-12
2010-01-0585
Gasoline turbocharged direct injection (GTDI) engines, such as EcoBoost™ from Ford, are becoming established as a high value technology solution to improve passenger car and light truck fuel economy. Due to their high specific performance and excellent low-speed torque, improved fuel economy can be realized due to downsizing and downspeeding without sacrificing performance and driveability while meeting the most stringent future emissions standards with an inexpensive three-way catalyst. A logical and synergistic extension of the EcoBoost™ strategy is the use of E85 (approximately 85% ethanol and 15% gasoline) for knock mitigation. Direct injection of E85 is very effective in suppressing knock due to ethanol's high heat of vaporization - which increases the charge cooling benefit of direct injection - and inherently high octane rating. As a result, higher boost levels can be achieved while maintaining optimal combustion phasing giving high thermal efficiency.
Journal Article

Influence of the Mixture Formation on the Lubrication Oil Emission of Combustion Engines

2010-04-12
2010-01-1275
Partly competing objectives, as low fuel consumption, low friction, long oil maintenance rate, and at the same time lowest exhaust emissions have to be fulfilled. Diminishing resources, continuously reduced development periods, and shortened product cycles yield detailed knowledge about oil consumption mechanisms in combustion engines to be essential. There are different ways for the lubricating oil to enter the combustion chamber: for example as blow-by gas, leakage past valve stem seals, piston rings (reverse blow-by) and evaporation from the cylinder liner wall and the combustion chamber. For a further reduction of oil consumption the investigation of these mechanisms has become more and more important. In this paper the influence of the mixture formation and the resulting fuel content in the cylinder liner wall film on the lubricant oil emission was examined.
Journal Article

Determination of the Cylinder Head Valve Bridge Temperatures in the Concept Phase Using a Novel 1D Calculation Approach

2010-04-12
2010-01-0499
The steady increase of engine power and the demand of lightweight design along with enhanced reliability require an optimized dimensioning process, especially in cylinder head valve bridge, which is progressively prone to cracking. The problems leading to valve bridge cracking are high temperatures and temperature gradients on one hand and high mechanical restraining on the other hand. The accurate temperature estimation at the valve bridge center has significant outcomes for valve bridge thickness and width optimization. This paper presents a 1D heat transfer model, which is constructed through the cross section of the valve bridge center by the use of well known quasi-stationary heat convection and conduction equations and reduced from 3D to 1D via regression and empirical weighting coefficients. Several diesel engine cylinder heads with different application types and materials are used for model setup and verification.
Journal Article

Simulation of the Dynamical Behavior of Elastic Multi-Body Systems with Bolted, Rough Contact Interfaces

2010-06-09
2010-01-1422
For many technical applications it is necessary to avoid or to reduce vibrations. Factors benefiting from vibration reduction are for example the durability of the application, which is increased, as well as cost expenses and the level of noise, which are both decreased. Rough, bolted interfaces are common in most machines and can be used as damping devices with some effort. Perhaps in future such contact surfaces could be used as damping devices at the interfaces of an automotive engine or exhaust system. Nevertheless it is difficult to predict the effect of a change in contact interface parameters on the dynamic behavior of the entire mechanical system. Therefore a method for calculating the steady state behavior of elastic multi-body systems was developed. The basis of this method is a finite element model of each contacting unit. On each model a modal reduction is applied in order to reduce the degrees of freedom.
Journal Article

Reed Valve CFD Simulation of a 2-Stroke Engine Using a 2D Model Including the Complete Engine Geometry

2010-09-28
2010-32-0015
CFD has been widely used to predict the flow behavior inside 2-stroke engines over the past twenty years. Usually a mass flow profile or a simple 0D model is used for the inlet boundary condition, which replaces the complete intake geometry, such as reed valve, throttle, and air box geometries. For a CFD simulation which takes into account the exact reed valve geometry, a simulation of all above mentioned domains is required, as these domains are coupled together and thus interact. As the high speed of the engine affects the opening dynamic and closure of the reed valve, the transient data from the crank case volume and the section upstream the reed valve have an important influence on the reed petal dynamic and therewith on the sucked fresh air mass of the engine. This paper covers a methodology for the transient CFD simulation of the reed petals of a 2-stroke engine by using a 2D model.
Journal Article

Modeling and Analysis of Powertrain NVH with Focus on Growl Noise

2013-05-13
2013-01-1875
Superior NVH performance is a key focus in the development of new powertrains. In recent years, computer simulations have gained an increasing role in the design, development, and optimization of powertrain NVH at component and system levels. This paper presents the results of a study carried out on a 4-cylinder in-line spark-ignition engine with focus on growl noise. Growl is a low frequency noise (300-700 Hz) which is primarily perceived at moderate engine speeds (2000-3000 rpm) and light to moderate throttle tip-ins. For this purpose, a coupled and fully flexible multi-body dynamics model of the powertrain was developed. Structural components were reduced using component mode synthesis and used to determine dynamics loads at various engine speeds and loading conditions. A comparative NVH assessment of various crankshaft designs, engine configurations, and in- cylinder gas pressures was carried out.
Journal Article

A Study on Operation Fluid Consumption for Heavy Duty Diesel Engine Application using both, EGR and SCR

2013-09-24
2013-01-2474
This paper describes a method for optimization of engine settings in view of best total cost of operation fluids. Under specific legal NOX tailpipe emissions requirements the engine out NOX can be matched to the current achievable SCR NOX conversion efficiency. In view of a heavy duty long haul truck application various specific engine operation modes are defined. A heavy duty diesel engine was calibrated for all operation modes in an engine test cell. The characteristics of engine operation are demonstrated in different transient test cycles. Optimum engine operation mode (EOM) selection strategies between individual engine operation modes are discussed in view of legal test cycles and real world driving cycles which have been derived from on-road tests.
Journal Article

Advantages and Challenges of Lean Operation of Two-Stroke Engines for Hand-Held Power Tools

2014-11-11
2014-32-0009
One of the most significant current discussions worldwide is the anthropogenic climate change accompanying fossil fuel consumption. Sustainable development in all fields of combustion engines is required with the principal objective to enhance efficiency. This certainly concerns the field of hand-held power tools as well. Today, two-stroke SI engines equipped with a carburetor are the most widely used propulsion technology in hand-held power tools like chain saws and grass trimmers. To date, research tended to focus on two-stroke engines with rich mixture setting. In this paper the advantages and challenges of leaner and/or lean operation are discussed. Experimental investigations regarding the influence of equivalence ratio on emissions, fuel consumption and power have been performed. Accompanying 3D-CFD simulations support the experiments in order to gain insight into these complex processes. The investigations concentrate on two different mixture formation processes, i.e.
Technical Paper

Visualization of Turbulence Anisotropy in the In-cylinder Flow of Internal Combustion Engines

2020-04-14
2020-01-1105
Turbulence anisotropy has a great influence on mixture formation and flame propagation in internal combustion engines. However, the visualization of turbulence in simulations is not straightforward; traditional methods lack the ability to display the anisotropic properties in the engine geometry. Instead, they use invariant maps, and important information about the locality of the turbulence anisotropy is lost. This paper overcomes this shortcoming by visualizing the anisotropy directly in the physical domain. Componentality contours are applied to directly visualize the anisotropic properties of turbulence in the three-dimensional engine geometry. Using an RGB (red, green, blue) color map, the three limiting states of turbulence (one-component, axisymmetric two-component and isotropic turbulence) are displayed in the three-dimensional physical domain.
Technical Paper

Experimental Investigation of the Influence of Ignition System Parameters on Combustion in a Rapid Compression-Expansion Machine

2020-04-14
2020-01-1122
Lean burn combustion concepts with high mean effective pressures are being pursued for large gas engines in order to meet future stringent emission limits while maintaining high engine efficiencies. Since severe boundary conditions for the ignition process are encountered with these combustion concepts, the processes of spark ignition and flame initiation are important topics of applied research, which aims to avoid misfiring and to keep cycle-to-cycle combustion variability within reasonable limits. This paper focuses on the fundamental investigation of early flame kernel development using different ignition system settings. The investigations are carried out on a rapid compression-expansion machine in which the spark ignition process can be observed under engine-like pressure and excess air ratio conditions while low flow velocities are maintained.
Journal Article

Evaporation and Cold Start Behavior of Bio-Fuels in Non-Automotive Applications

2016-11-08
2016-32-0034
Worldwide increasing energy consumption, decreasing energy resources and continuous restriction of emission legislation cause a rethinking in the development of internal combustion engines and fuels. Alternative renewable fuels, so called bio-fuels, have the potential to contribute to environmentally friendly propulsion systems. This study concentrates on the usage of alcohol fuels like ethanol, methanol and butanol in non-automotive high power engines, handheld power tools and garden equipment with the focus on mixture formation and cold start capability. Although bio-fuels have been investigated intensely for the use in automotive applications yet, the different propulsion systems and operation scenarios of nonautomotive applications raise the need for specific research. A zero dimensional vaporization model has been set up to calculate the connections between physical properties and mixture formation.
Journal Article

Mass Balancing Measures of a Linkage-Based Extended Expansion Engine

2016-11-08
2016-32-0096
The enhancement of efficiency will play a more and more important role in the development of future (small) internal combustion engines. In recent years, the Atkinson (or Extended Expansion) cycle, realized over the crank drive, attracted increasing attention. Several OEMs have investigated this efficiency-increasing principle in the whole range from small engines up to automotive engines until now. In prior publications, the authors outlined the remarkable efficiency potentials of an Extended Expansion (EE) cycle. However, for an internal combustion engine, a smooth running performance as well as low vibrations and noise emissions are relevant aspects. This is especially true for an Extended Expansion engine realized over the crank drive. Therefore, design measures concerning friction and NVH need to be taken to enable possible series production status. Basically, these measures strongly depend on the reduction of the free mass forces and moments.
Journal Article

Experimental and Simulative Friction Analysis of a Fired Passenger Car Diesel Engine with Focus on the Cranktrain

2016-10-17
2016-01-2348
The CO2 reduction required by legislation represents a major challenge to the OEMs now and in the future. The use of fuel consumption saving potentials of friction-causing engine components can make a significant contribution. Boundary potential aspects of a combustion engine offer a good opportunity for estimating fuel consumption potentials. As a result, the focus of development is placed on components with great saving potentials. Friction investigations using the motored method are still state of the art. The disadvantages using this kind of friction measurement method are incorrect engine operating conditions like cylinder pressure, piston and liner temperatures, piston secondary movement and warm deformations which can lead to incorrect measurement results compared to a fired engine. In the past, two friction measurement methods came up, the so called floating liner method and a motored friction measurement with external charging.
Journal Article

Investigations and Analysis of Working Processes of Two-Stroke Engines with the Focus on Wall Heat Flux

2016-11-08
2016-32-0028
Small displacement two-stroke engines are widely used as affordable and low-maintenance propulsion systems for motorcycles, scooters, hand-held power tools and others. In recent years, considerable progress regarding emission reduction has been reached. Nevertheless, a further improvement of two-stroke engines is necessary to cover protection of health and environment. In addition, the shortage of fossil fuel resources and the anthropogenic climate change call for a sensual use of natural resources and therefore, the fuel consumption and engine efficiency needs to be improved. With the application of suitable analyses methods it is possible to find improving potential of the working processes of these engines. The thermodynamic loss analysis is a frequently applied method to examine the working process and is universally adaptable.
Journal Article

Experimental Optimization of a Small Bore Natural Gas-Diesel Dual Fuel Engine with Direct Fuel Injection

2016-04-05
2016-01-0783
Dual fuel combustion processes, which burn varying ratios of natural gas and diesel, are an attempt to reach high efficiencies similar to diesel engines while exploiting the CO2 savings potential of natural gas. As shown in earlier studies, the main challenge of this combustion process is the high emission of unburned hydrocarbons during low load operation. Many publications have focused on a layout which utilizes port injection of natural gas and a direct injection of diesel to initiate combustion. However, previous studies indicated that a sequential direct injection of both fuels is more promising. It enables charge stratification of natural gas and air, whereby a remarkable reduction of the unburned hydrocarbon emissions was observed. This work develops this approach further, utilizing a low pressure direct injection of natural gas.
Journal Article

Advanced Knock Detection for Diesel/Natural Gas Engine Operation

2016-04-05
2016-01-0785
As emission limits become increasingly stringent and the price of gaseous fuels decreases, more emphasis is being placed on promoting gas engines. In the field of large engines for power generation, dual fuel combustion concepts that run on diesel/natural gas are particularly attractive. Knock in diesel/natural gas dual fuel engines is a well known yet not fully understood complex phenomenon that requires consideration in any attempt to increase load and efficiency. Thus combustion concept development requires a reliable yet robust methodology for detecting knock in order to ensure knock-free engine operation. Operating parameters such as rail pressure, start of injection and amount of diesel injected are the factors that influence oscillations in the in-cylinder pressure trace after the start of combustion. Oscillations in the pre-mixed combustion phase, or ringing, are caused by the rapid conversion of large parts of the injected diesel.
Journal Article

Sulfur Poisoning of a NOx Storage Catalyst - A Comprehensive Modelling Approach

2016-04-05
2016-01-0964
This paper describes the development of a 0-D-sulfur poisoning model for a NOx storage catalyst (NSC). The model was developed and calibrated using findings and data obtained from a passenger car diesel engine used on testbed. Based on an empirical approach, the developed model is able to predict not only the lower sulfur adsorption with increasing temperature and therefore the higher SOx (SO2 and SO3) slip after NSC, but also the sulfur saturation with increasing sulfur loading, resulting in a decrease of the sulfur adsorption rate with ongoing sulfation. Furthermore, the 0-D sulfur poisoning model was integrated into an existing 1-D NOx storage catalyst kinetic model. The combination of the two models results in an “EAS Model” (exhaust aftertreatment system) able to predict the deterioration of NOx-storage in a NSC with increasing sulfation level, exhibiting higher NOx-emissions after the NSC once it is poisoned.
X