Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Cartronic-An Ordering Concept for Future Vehicle Control Systems

1998-10-19
98C011
The continuously increasing performance of modern automotive microelectronics is leading to ever more complex open and closed-loop control functions. Rigid mechanical connections a broken down and electronics applied to make them controllable. Among the examples are camshaft control, or future systems for variable valve-lift control. In addition, the individual systems in the vehicle, such as engine management, transmission-shift control, and ABSR will be networked with one another. The result is a system alliance which communicates through a car-wide web. The major challenge posed by this development in the future, lies in still being able to reliably control the complexity of the system alliance from the point of view of reliability and safety. This means that the suitable sensor and actuator basis, together with an architecture having fixed configuration rulings and matching development methods, are indispensable.
Technical Paper

Standardization and Cost Optimization of ABS Ecus

1998-10-19
98C004
ABS has proven to be a contribution to active safety. The introduction of traction control (TC) in 1986 and even more significantly, the introduction of vehicle dynamics control (VDC) in 1995 have been further milestones in this field. The functionality of these systems (ABS, TC, VDC) is mainly determined by the electronic control unit (ECU). A system supplier who is to provide an ECU-platform concept including a large functionality, while meeting customer specific requirements at an optimized price, needs standardization strategies. This paper describes a standardization concept for an ABS ECU, beginning with the basic ABS HW and SW design and the extension to TC and VDC. It also shows the degree of flexibility, the benefits for the vehicle manufacturer and the possible cost optimization for the system supplier.
Technical Paper

Numerical and Experimental Analysis of the Mass Transfer in Exhaust Gas Sensors

2007-04-16
2007-01-1144
Within the scope of this work, the convective mass transfer to the zirconia sensor element of an exhaust oxygen sensor was analyzed experimentally and numerically. For the experimental setup, a heightened model of an oxygen sensor was built from Lucite® considering the similarity theory. Mass transfer is measured based on the absorption of ammonia and subsequent immediate color reaction. For the numerical investigation, a three-dimensional model of the test rig was built. To predict the flow pattern and the species transport inside the protection tubes, the commercial CFD-Code FLUENT® is used. The model for the mass transfer to the surface is implemented through user-defined functions.
Technical Paper

Numerical and Experimental Analysis of the 3D Flow-Pattern in Exhaust Gas Sensors

2004-03-08
2004-01-1118
In new exhaust system specifications such as single cylinder balancing, closed coupled catalyst systems, sensor locations close to the engine, turbo applications, fast light off situations and diesel engine applications the dynamic behavior of the lambda sensor becomes more important. This demands a detailed knowledge and modeling of the relevant parameters. In former analysis of exhaust gas sensors the main focus has been the electrochemical processes in the sensor. The influence of flow structure and protection tubes had lower priority. In this paper we present the numerical and experimental analysis of cold air flowing in a pipe including mounted exhaust sensors. Two double-protection tubes from the Robert Bosch GmbH have been examined named (a) and (b). The predicted results have been compared with values measured with Laser Doppler Anemometry (LDA). The flow pattern in the protection tube type (a) depends on the geometric configuration of the sensor element and the tubes.
Technical Paper

Advanced Emission and Fuel Economy Concept Using Combined Injection of Gasoline and Hydrogen in SI-Engines

2004-03-08
2004-01-1270
In order to meet future requirements for emission reduction and fuel economy a variety of concepts are available for gasoline engines. In the recent past new pathways have been found using alternative fuels and fuel combinations to establish cost optimized solutions. The presented concept for a SI-engine consists of combined injection of gasoline and hydrogen. A hydrogen enriched gas mixture is being injected additionally to gasoline into the engine manifold. The gas composition represents the output of an onboard gasoline reformer. The simulations and measurements show substantial benefits to improve the combustion process resulting in reduced cold start and warm up emissions and optimized part load operation. The replacement of gasoline by hydrogen-rich gas during engine start leads to zero hydrocarbons in the exhaust gas.
Technical Paper

Application of ISO 26262 in Distributed Development ISO 26262 in Reality

2009-04-20
2009-01-0758
With its origin in the process industry, the IEC 61508 „Functional safety of electrical/electronic/programmable electronic safety-related systems” is not fully applicable in the automotive industry, forcing the automotive industry to work on an automotive specific adaptation (ISO 26262 “Functional Safety – Road Vehicles”). This ISO 26262 describes an ideal development process that starts from scratch. In reality development activities are often split locally and in time. This can only be handled with a world wide standard as a basis of a common approach, wide enough to give enough freedom to adapt to diverse boundary conditions, but tight enough to hinder local interpretations to be that far, that a complete safety case becomes impossible. Therefore a strict world-wide standard which allows compatible interpretations is mandatory.
Journal Article

A Representative Testing Methodology for System Influence on Automotive Fuel Filtration

2013-04-08
2013-01-0891
Filtration of diesel and gasoline fuel in automotive applications is affected by many external and internal parameters, e.g. vibration, temperature, pressure, flow pulsation, and engine start-stop. Current test procedures for automotive fuel filters, proposed by most of the researchers and organizations including Society for Automotive Engineers (SAE) and International Organization for Standardization (ISO), do not apply the previously mentioned real-world-conditions. These operating conditions, which are typical for an automotive fueling system, have a significant effect on fuel filtration and need to be considered for the accurate assessment of the filter. This requires the development of improved testing procedures that will simulate the operating conditions in a fuel system as encountered in the real world.
Technical Paper

Variable Orifice Geometry Verified on the Two-Phase Nozzle (VRD)

1995-02-01
950081
Innovative solutions for reducing particulate emissions will be necessary in order to comply with the even more stringent exhaust-gas standards of the future. The potential of a diesel nozzle with variable orifice geometry has long been common knowledge in the area of engine construction. But up to now, a fully functional solution of such a nozzle has not appeared which operates with a reduced orifice at low engine speeds and/or low loads. Here with regard to target costing, the requirements implicit in function and manufacture must also be taken into account. Using calculations on nozzle interior flow and injection-spray investigations, it will be shown which nozzle geometries best fulfill the various requirements. In order to achieve low levels of particulate emission in an engine with a combustion chamber designed for optimum use of a hole-type nozzle, the injection-spray direction and its geometry must to a large extent correspond to those of a hole-type nozzle.
Technical Paper

Secondary Air Injection with a New Developed Electrical Blower for Reduced Exhaust Emissions

1994-03-01
940472
Secondary air injection after cold start gives two effects for reduced exhaust emissions: An exothermic reaction at the hot exhaust valves occurs, which increases the temperature of the exhaust gas. It gives sufficient air to the catalyst during the cold start fuel enrichment that is necessary to prevent driveability problems. Handicaps for the wide use of air injection include space constraints, weight and price. An electrical air blower was choosen to best satisfy all these requirements. The development steps are described. The result is a three stage radialblower with extremly high revolutions of about 18000 rpm. The system configuration and the outcome are demonstrated on the new C-Class of Mercedes-Benz. The results show emission reductions higher than 50 %, while also satisfying the development goals of noise, volume, weight and cost requirements.
Technical Paper

A Universal and Cost-Effective Fuel Gauge Sensor Based on Wave Propagation Effects in Solid Metal Rods

1994-03-01
940628
In recognition of safety considerations, modern fuel tanks are frequently extremely irregular in shape. This places limits on the application of conventional potentiometric sensors. Required are more universal sensors without mechanically-moving parts. These sensors should also be characterized by especially good resolution and precision in the residual-quantity range, that is, the zero point precision should be of a high order. One type of metal rod can be bent into any of a variety of shapes to provide an effective means of monitoring the fuel level. In this metal rod, the propagation characteristics of a certain type of sound wave, known as bending waves, display major variations according to the level of the surrounding medium: The waves spread more rapidly through the exposed section of the rod than through the area which remains submerged. Thus the rod's characteristic oscillation frequency varies as a function of immersion depth.
Technical Paper

ABS5.3: The New and Compact ABS5 Unit for Passenger Cars

1995-02-01
950757
The transition from the multi-component ABS2 design to the one housing concept of ABS5.0 represented a significant step in improving the ABS unit. ABS5.3 is the successor of ABS5.0 to achieve a highly compact, light weight inexpensive design, for the broad use of ABS in all passenger cars and light trucks. New technologies applied are the staking technique for hydraulic components, the use of microhybrid electronics design and solenoid coils being integrated within the attached electronic control unit. The unit can be manufactured in global alliance achieved by simultaneous engineering, applying CAD, FE-analysis, flow calculation and simulation, noise analysis and quality assurance which includes FMEA, error simulation, durability tests and the dry testing concept. The ABS5.3 design can be easily expanded to Traction Control (ASR).
Journal Article

Sensor Data Fusion for Active Safety Systems

2010-10-19
2010-01-2332
Active safety systems will have a great impact in the next generation of vehicles. This is partly originated by the increasing consumer's interest for safety and partly by new traffic safety laws. Control actions in the vehicle are based on an extensive environment model which contains information about relevant objects in vehicle surroundings. Sensor data fusion integrates measurements from different surround sensors into this environment model. In order to avoid system malfunctions, high reliability in the interpretation of the situation, and therefore in the environment model, is essential. Hence, the main idea of data fusion is to make use of the advantages of using multiple sensors and different technologies in order to fulfill these requirements, which are especially high due to autonomous interventions in vehicle dynamics (e. g. automatic emergency braking).
Journal Article

Particulate Matter Sensor for On Board Diagnostics (OBD) of Diesel Particulate Filters (DPF)

2010-04-12
2010-01-0307
The emissions legislation in the US and Europe introduces the need for the application of diesel particulate filters (DPF) in most diesel vehicles. In order to fulfill future OBD legislations, which include more stringent requirements on monitoring the functionality of those particulate filters, new sensors besides the differential pressure sensor are necessary. The new sensors need to directly detect the soot emission after DPF and withstand the harsh exhaust gas environment. Based on multi layer ceramic sensor technology, an exhaust gas sensor for particulate matter (EGS-PM) has been developed. The soot-particle-sensing element consists of two inter-digitated comb-like electrodes with an initially infinite electrical resistance. During the sensor operation, soot particles from the exhaust gas are collected onto the inter-digital electrodes and form conductive paths between the two electrode fingers leading to a drop of the electrical resistance.
Technical Paper

Impact of the Injection and Gas Exchange on the Particle Emission of a Spark Ignited Engine with Port Fuel Injection

2017-03-28
2017-01-0652
This study presents a methodology to predict particle number (PN) generation on a naturally aspirated 4-cylinder gasoline engine with port fuel injection (PFI) from wall wetting, employing numerical CFD simulation and fuel film analysis. Various engine parameters concerning spray pattern, injection timing, intake valve timing, as well as engine load/speed were varied and their impact on wall film and PN was evaluated. The engine, which was driven at wide open throttle (WOT), was equipped with soot particle sampling technology and optical access to the combustion chamber of cylinder 1 in order to visualise non-premixed combustion. High-speed imaging revealed a notable presence of diffusion flames, which were typically initiated between the valve seats and cylinder head. Their size was found to match qualitatively with particulate number measurements. A validated CFD model was employed to simulate spray propagation, film transport and droplet impingement.
Technical Paper

Numerical and Experimental Studies on Mixture Formation with an Outward-Opening Nozzle in a SI Engine with CNG-DI

2016-04-05
2016-01-0801
CNG direct injection is a promising technology to promote the acceptance of natural gas engines. Among the beneficial properties of CNG, like reduced pollutants and CO2 emissions, the direct injection contributes to a higher volumetric efficiency and thus to a better driveability, one of the most limiting drawbacks of today’s CNG vehicles. But such a combustion concept increases the demands on the injection system and mixture formation. Among other things it requires a much higher flow rate at low injection pressure. This can be only provided by an outward-opening nozzle due to its large cross-section. Nevertheless its hollow cone jet with a specific propagation behavior leads to an adverse fuel-air distribution especially at higher loads under scavenging conditions. This paper covers numerical and experimental analysis of CNG direct injection to understand its mixture formation.
Technical Paper

The Impact of a Combustion Chamber Optimization on the Mixture Formation and Combustion in a CNG-DI Engine in Stratified Operation

2017-03-28
2017-01-0779
A previous study by the authors has shown an efficiency benefit of up to Δηi = 10 % for stratified operation of a high pressure natural gas direct injection (DI) spark ignition (SI) engine compared to the homogeneous stoichiometric operation with port fuel injection (PFI). While best efficiencies appeared at extremely lean operation at λ = 3.2, minimum HC emissions were found at λ = 2. The increasing HC emissions and narrow ignition time frames in the extremely lean stratified operation have given the need for a detailed analysis. To further investigate the mixture formation and flame propagation und these conditions, an optically accessible single-cylinder engine was used. The mixture formation and the flame luminosity have been investigated in two perpendicular planes inside the combustion chamber.
Technical Paper

Heated Zirconia Oxygen Sensor for Stoichiometric and Lean Air-Fuel Ratios

1984-02-01
840141
This publication describes the design and operation of an electrically heated ZrO2 sensor and demonstrates its advantages in comparison to the present unheated sensor in a λ = 1 system. Control ability down to very low exhaust temperatures, minimized temperature dependence and reduced aging effects result in lower emissions with the heated sensor. The application advantages in a λ = 1 system are discussed. The second part of the paper discribes the properties of this heated sensor for measurement of lean exhaust gas. The λ-range 1.0 to 1.5 can be covered without any additional temperature compensation with sufficient accuracy and stability over life time.
Technical Paper

Hitch System Comparison — Mechanical, Hydraulic, Electronic

1984-09-01
841130
Modern agricultural tractors are equipped with a hitch control system. These may be mechanical-hydraulic, hydraulic-hydraulic, or electronic-hydraulic. With the variety of design options open to the tractor manufacturer, it is important to select the system which best fits the manufacturer and end user. This paper presents a comprehensive comparison of each system. Robert Bosch has had many years experience in the design and manufacture of components for hitch systems, and hopes to help designers choose the approach best suited for them.
Technical Paper

Engine Management Systems in Hybrid Technology

1986-03-01
860593
Increasingly stringent requirements regarding exhaust emission, fuel consumption, driveability and comfort have led to an accelerated introduction of electronically controlled systems, the complexity of which can best be handled by microcomputers, these being the basis of all modern electronic control units. These electronic control units are usually installed in the passenger compartment, due to the need for moderate conditions in respect of temperature, vibration, moisture and dust. However because of the increasing variety of systems the available space for the installation of these control boxes has become smaller and smaller whilst the complexity of the wire harness has led to increased costs and electromagnetic interference problems. As a result there is an increasing demand for electronic control units (ECU) which can be installed in the engine compartment.
Technical Paper

Automotive Serial Controller Area Network

1986-02-01
860391
A high speed serial communication link has been developed for interconnecting electronic control units within automobiles. The incorporation of object oriented communication in conjunction with acceptance filtering introduces a new level of message handling efficiency and flexibility. Powerful error handling techniques guarantee safe operation in noisy automotive environments.
X