Refine Your Search

Topic

Author

Search Results

Technical Paper

Cartronic-An Ordering Concept for Future Vehicle Control Systems

1998-10-19
98C011
The continuously increasing performance of modern automotive microelectronics is leading to ever more complex open and closed-loop control functions. Rigid mechanical connections a broken down and electronics applied to make them controllable. Among the examples are camshaft control, or future systems for variable valve-lift control. In addition, the individual systems in the vehicle, such as engine management, transmission-shift control, and ABSR will be networked with one another. The result is a system alliance which communicates through a car-wide web. The major challenge posed by this development in the future, lies in still being able to reliably control the complexity of the system alliance from the point of view of reliability and safety. This means that the suitable sensor and actuator basis, together with an architecture having fixed configuration rulings and matching development methods, are indispensable.
Technical Paper

Advanced Emission and Fuel Economy Concept Using Combined Injection of Gasoline and Hydrogen in SI-Engines

2004-03-08
2004-01-1270
In order to meet future requirements for emission reduction and fuel economy a variety of concepts are available for gasoline engines. In the recent past new pathways have been found using alternative fuels and fuel combinations to establish cost optimized solutions. The presented concept for a SI-engine consists of combined injection of gasoline and hydrogen. A hydrogen enriched gas mixture is being injected additionally to gasoline into the engine manifold. The gas composition represents the output of an onboard gasoline reformer. The simulations and measurements show substantial benefits to improve the combustion process resulting in reduced cold start and warm up emissions and optimized part load operation. The replacement of gasoline by hydrogen-rich gas during engine start leads to zero hydrocarbons in the exhaust gas.
Technical Paper

Variable Orifice Geometry Verified on the Two-Phase Nozzle (VRD)

1995-02-01
950081
Innovative solutions for reducing particulate emissions will be necessary in order to comply with the even more stringent exhaust-gas standards of the future. The potential of a diesel nozzle with variable orifice geometry has long been common knowledge in the area of engine construction. But up to now, a fully functional solution of such a nozzle has not appeared which operates with a reduced orifice at low engine speeds and/or low loads. Here with regard to target costing, the requirements implicit in function and manufacture must also be taken into account. Using calculations on nozzle interior flow and injection-spray investigations, it will be shown which nozzle geometries best fulfill the various requirements. In order to achieve low levels of particulate emission in an engine with a combustion chamber designed for optimum use of a hole-type nozzle, the injection-spray direction and its geometry must to a large extent correspond to those of a hole-type nozzle.
Technical Paper

Impact of the Injection and Gas Exchange on the Particle Emission of a Spark Ignited Engine with Port Fuel Injection

2017-03-28
2017-01-0652
This study presents a methodology to predict particle number (PN) generation on a naturally aspirated 4-cylinder gasoline engine with port fuel injection (PFI) from wall wetting, employing numerical CFD simulation and fuel film analysis. Various engine parameters concerning spray pattern, injection timing, intake valve timing, as well as engine load/speed were varied and their impact on wall film and PN was evaluated. The engine, which was driven at wide open throttle (WOT), was equipped with soot particle sampling technology and optical access to the combustion chamber of cylinder 1 in order to visualise non-premixed combustion. High-speed imaging revealed a notable presence of diffusion flames, which were typically initiated between the valve seats and cylinder head. Their size was found to match qualitatively with particulate number measurements. A validated CFD model was employed to simulate spray propagation, film transport and droplet impingement.
Technical Paper

Numerical and Experimental Studies on Mixture Formation with an Outward-Opening Nozzle in a SI Engine with CNG-DI

2016-04-05
2016-01-0801
CNG direct injection is a promising technology to promote the acceptance of natural gas engines. Among the beneficial properties of CNG, like reduced pollutants and CO2 emissions, the direct injection contributes to a higher volumetric efficiency and thus to a better driveability, one of the most limiting drawbacks of today’s CNG vehicles. But such a combustion concept increases the demands on the injection system and mixture formation. Among other things it requires a much higher flow rate at low injection pressure. This can be only provided by an outward-opening nozzle due to its large cross-section. Nevertheless its hollow cone jet with a specific propagation behavior leads to an adverse fuel-air distribution especially at higher loads under scavenging conditions. This paper covers numerical and experimental analysis of CNG direct injection to understand its mixture formation.
Technical Paper

The Impact of a Combustion Chamber Optimization on the Mixture Formation and Combustion in a CNG-DI Engine in Stratified Operation

2017-03-28
2017-01-0779
A previous study by the authors has shown an efficiency benefit of up to Δηi = 10 % for stratified operation of a high pressure natural gas direct injection (DI) spark ignition (SI) engine compared to the homogeneous stoichiometric operation with port fuel injection (PFI). While best efficiencies appeared at extremely lean operation at λ = 3.2, minimum HC emissions were found at λ = 2. The increasing HC emissions and narrow ignition time frames in the extremely lean stratified operation have given the need for a detailed analysis. To further investigate the mixture formation and flame propagation und these conditions, an optically accessible single-cylinder engine was used. The mixture formation and the flame luminosity have been investigated in two perpendicular planes inside the combustion chamber.
Technical Paper

Crank Angle Resolved Determination of Fuel Concentration and Air/Fuel Ratio in a SI-Internal Combustion Engine Using a Modified Optical Spark Plug

2007-04-16
2007-01-0644
A fiber optical sensor system was used to detect the local fuel concentration in the vicinity of the spark position in a cylinder of a four-stroke SI production engine. The fuel concentration was determined by the infrared absorption method, which allows crank angle resolved fuel concentration measurements during multiple successive engine cycles. The sensor detects the attenuation of infrared radiation in the 3.4 μm wavelength region due to the infrared vibrational-rotational absorption band of hydrocarbons (HC). The absorption path was integrated in a modified spark plug and a tungsten halide lamp was used as an infrared light source. All investigations were carried out on a four-stroke spark ignition engine with fuel injection into the intake manifold. The measurements were made under starting conditions of the engine, which means a low engine speed. The engine operated with common gasoline (Euro Super) at different air/fuel-ratios.
Technical Paper

FEM Approximation of Internal Combustion Chambers for Knock Investigations

2002-03-04
2002-01-0237
The resonances of SI engine combustion chambers are slightly excited during normal combustion but strongly excited by knock. In order to avoid knocking combustions extensive knowledge about knock and its effects is necessary. In this paper the combustion chamber of a serial production engine is modeled by finite elements. Modal analyses are performed in order to gain information about the resonances, their frequencies, and their frequency and amplitude modulations. Simulation results are compared to measured data using a high-resolution time-frequency method. Furthermore, a connection between knock origin and the excitation of the resonances is postulated applying transient analyses.
Technical Paper

IMEP-Estimation and In-Cylinder Pressure Reconstruction for Multicylinder SI-Engine by Combined Processing of Engine Speed and One Cylinder Pressure

2005-04-11
2005-01-0053
In order to optimize the performance and emission of engines, advanced control and diagnostic systems require detailed feedback information about the combustion process. In this context, cost-effective solutions are of interest. The contribution describes a method for reconstructing cylinder-individual features of each combustion cycle by processing the instantaneous fluctuations of the engine speed and the in-cylinder pressure of one cylinder. Model-based torque estimation, analyzing both of the signals simultaneously, provides an accurate estimation of the mean indicated pressure. Using this method, a new algorithm for advanced misfire detection is presented. Furthermore, a new pressure model with a feasible number of parameters is proposed. It is combined with the torque estimation in order to reconstruct the unknown pressure traces of the cylinders not equipped with sensors.
Technical Paper

In-Cylinder Pressure Estimation from Structure-Borne Sound

2000-03-06
2000-01-0930
We propose a novel method to real-time in-cylinder pressure estimation by processing structure-borne sound measurements. It has been shown that knowledge of the in-cylinder pressure opens the door to robust misfire detection and sophisticated closed loop engine control schemes. However, the costs of such sensors have inhibited their use in production engines. On the other hand, acceleration sensors are of low cost and already mounted on modern production engines for knock detection. Since structure-borne sound is measured on the surface of the engine, all cylinders are simultaneously observed by one sensor. A simple physically based model, describing the speed dependence of the transfer behavior from each in-cylinder pressure to structure-borne sound is developed. Based on this model, a method for identifying the parameterized transfer function speed independently is developed.
Technical Paper

A New Datadriven Approach to Modeling the Combustion of a Diesel Engine in HCCI Mode

2009-04-20
2009-01-0128
The contribution presents a new data driven modeling approach for diesel HCCI combustion. Input parameters of the combustion model are external actuating variables as for example the start of injection. The model incorporates experimental data of the engine in HCCI mode, in the standard diesel mode and in the transition region between both modes. New disclosed dependencies between characteristic values of the cylinder pressure and the fuel burn rate are used to linearize the combustion model for a given operating point. In this paper the validation of the combustion model is discussed based on dynamic measuring data of the urban part of the NEDC. Finally, the combustion model is integrated in a zero-dimensional diesel engine model.
Journal Article

Estimation of Cylinder-Wise Combustion Features from Engine Speed and Cylinder Pressure

2008-04-14
2008-01-0290
Advanced engine control and diagnosis strategies for internal combustion engines need accurate feedback information from the combustion engine. The feedback information can be utilized to control combustion features which allow the improvement of engine's efficiency through real-time control and diagnosis of the combustion process. This article describes a new method for combustion phase and IMEP estimation using one in-cylinder pressure and engine speed. In order to take torsional deflections of the crankshaft into account a gray-box model of the crankshaft is identified by subspace identification. The modeling accuracy is compared to a stiff physical crankshaft model. For combustion feature estimation, the identified MISO (multiple input single output) system is inverted. Experiments for a four-cylinder spark-ignition engine show the superior performance of the new method for combustion feature estimation compared to a stiff model approach.
Journal Article

Development of the Combustion System for General Motors' 3.6L DOHC 4V V6 Engine with Direct Injection

2008-04-14
2008-01-0132
General Motors' 3.6L DOHC 4V V6 engine has been upgraded to provide substantial improvements in performance, fuel economy, and emissions for the 2008 model year Cadillac CTS and STS. The fundamental change was a switch from traditional manifold-port fuel injection (MPFI) to spark ignition direct injection (SIDI). Additional modifications include enhanced cylinder head and intake manifold air flow capacities, optimized camshaft profiles, and increased compression ratio. The SIDI fuel system presented the greatest opportunities for system development and optimization in order to maximize improvements in performance, fuel economy, and emissions. In particular, the injector flow rate, orifice geometry, and spray pattern were selected to provide the optimum balance of high power and torque, low fuel consumption, stable combustion, low smoke emissions, and robust tolerance to injector plugging.
Technical Paper

A New MOTRONIC System with 16 Bit Micro Controller

1989-08-01
891648
The functionality of engine management systems has grown rapidly over the last few years. The paper presents a new Motronic concept, the engine management control M3. The Motronic family M3 is a modular design destined to control engines with up to eight cylinders individually. The main features of this system and the ECU's concept are discussed.
Technical Paper

Investigation into the Formation and Prevention of Internal Diesel Injector Deposits

2008-04-14
2008-01-0926
1 High precision high pressure diesel common rail fuel injection systems play a key role in emission control, fuel consumption and driving performance. Deposits have been observed on internal injector components, for example in the armature assembly, in the slots of the piston and on the nozzle needle. The brownish to colourless deposits can adversely impact driveability and result in non-compliance with the Euro 4 or Euro 5 emission limits. The deposits have been extensively studied to understand their composition and their formation mechanism. Due to the location of these deposits, the influence of combustion gas can be completely ruled out. In fact, their formation can be explained by interactions of certain diesel fuel additives, including di- and mono-fatty acids. This paper describes the methodology used and the data generated that support the proposed mechanisms. Moreover, approaches to avoid such interactions are discussed.
Journal Article

Fault Diagnosis of Fully Variable Valve Actuators on a Four Cylinder Camless Engine

2008-04-14
2008-01-1353
Fully Variable Valve Actuation (FVVA) systems enable to employ a wide range of combustion strategies by providing the actuation of a gas exchange valve at an arbitrary point in time, with variable lift and adjustable ramps for opening and closing. Making such a system ready for the market requires appropriate fault-diagnostic functionality. Here, we focus on diagnosis possibilities by using air intake system sensors such as Manifold Absolute Pressure (MAP) sensors. Results obtained on a 4-cylinder test bench engine are presented for the early intake opening strategy under different loads, and at medium range rotational speeds on steady-state conditions. It is shown that detection and identification of the different critical faults on each actuator is possible by using a Fourier series signal model of the MAP sensor.
Technical Paper

Yaw Rate Sensor for Vehicle Dynamics Control System

1995-02-01
950537
From the beginning of 1995 on, RB will start the production of the Vehicle Dynamics Control System. A key part of this system is the Yaw Rate Sensor described in this paper. The basic requirements for this sensor for automotive applications are: mass producibility, low cost, resistance against environmental influences (such as temperature, vibrations, EMI), stability of all characteristics over life time, high reliability and designed-in safety. Bosch developed a sensor on the basis of the “Vibrating Cylinder”. The sensor will be introduced into mass production in beginning of 1995.
Technical Paper

Integrated Silicon Pressure Sensor for Automotive Application with Electronic Trimming

1995-02-01
950533
An integrated manifold pressure sensor using bulk silicon micromachining techniques is presented. The sensor incorporates the entire signal amplification, temperature compensation, and circuitry for electronic trimming of the sensor chip. The chip circuitry and the manufacturing and assembly process will be discussed. Trimming of the sensitivity and offset production tolerances as well as the temperature coefficients of sensitivity and offset is performed using an electrical trim method. A binary coded digital compensation information is serially fed into an on-chip control unit. The individual bits are decoded and sent to the gates of a bank of trimming thyristors. Once the correct binary code has been selected so that the sensor characteristic is centered in the specified range, the programming voltage is increased and the data is irreversibely stored similarly to the zener zapping method.
Technical Paper

A New Combustion Pressure Sensor for Advanced Engine Management

1994-03-01
940379
A new combustion pressure sensor (CPS) for advanced engine management is presented, which is designed to carry out the functions: misfire detection, knock control, ignition control, camshaft phase detection and engine roughness control. For small size and high accuracy at a reasonable cost the piezoresistive effect, which is realized within an integrated circuit device and delivers low impedance output signals, has been chosen. Due to the optimized sensor housing, membrane and force transfer design, the sensor shows little offset drift when affected by flame front and environmental thermal stress. This paper describes the CPS and its performance in comparison with a well-known highly accurate reference sensor.
Technical Paper

A Non Contact Strain Gage Torque Sensor for Automotive Servo Driven Steering Systems

1994-03-01
940629
Tapping of one or more torques (ranges 10 Nm and 60 Nm) on the steering column for the purpose of servo control must satisfy high accuracy requirements on the one hand and high safety requirements on the other hand. A suggestion for developing a low-cost solution to this problem is described below: Strain gages optimally satisfy both these requirements: However, for cost reasons, these are not applied directly to the steering column but to a prefabricated, flat steel rod which is laser welded to the torque rod of the steering column. The measuring direction of the strain gages is under 45° to the steering column axis. The strain gages are either vacuum metallized onto the support rod as a thin film or laminated in a particularly low-cost way by means of a foil-type intermediate carrier.
X