Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

Vehicle Dynamics Control for Commercial Vehicles

1997-11-17
973284
This paper presents the Vehicle Dynamics Control (VDC) for commercial vehicles developed by BOSCH. The underlying physical concept is discussed in the second section after a short introduction. The third section shows the computer simulation used in the development process. Section four describes the controller structure of the VDC system. In Section five the use and effectiveness of VDC for commercial vehicles is shown in different critical driving situations. This is done by using measured data collected during testing (lane change, circular track) and it demonstrates that the safety improvements achieved for passenger cars are also possible for commercial vehicles.
Technical Paper

Electronic Braking System EBS - Status and Advanced Functions

1998-11-16
982781
Since 1996 a 2nd Generation EBS has been available in Europe as an advanced brake system offering a variety of advantages to the OEM as well as to the truck and fleet owner. EBS enhances vehicle safety and improves the braking performance to a “passenger car like” braking feel, allowing less experienced drivers better vehicle handling. The brake lining wear control and retarder integration allow the reduction of operational costs. The safety enhancements achieved by EBS in conjunction with disc brakes, are rewarded by European truck insurance companies by lower insurance fees. The importance of EBS will still gain significantly through the developments in process. EBS is the platform for ESP and ACC, which will be a major contributer to better integration of trucks in dense traffic flow.
Technical Paper

Application of ISO 26262 in Distributed Development ISO 26262 in Reality

2009-04-20
2009-01-0758
With its origin in the process industry, the IEC 61508 „Functional safety of electrical/electronic/programmable electronic safety-related systems” is not fully applicable in the automotive industry, forcing the automotive industry to work on an automotive specific adaptation (ISO 26262 “Functional Safety – Road Vehicles”). This ISO 26262 describes an ideal development process that starts from scratch. In reality development activities are often split locally and in time. This can only be handled with a world wide standard as a basis of a common approach, wide enough to give enough freedom to adapt to diverse boundary conditions, but tight enough to hinder local interpretations to be that far, that a complete safety case becomes impossible. Therefore a strict world-wide standard which allows compatible interpretations is mandatory.
Technical Paper

ABS5.3: The New and Compact ABS5 Unit for Passenger Cars

1995-02-01
950757
The transition from the multi-component ABS2 design to the one housing concept of ABS5.0 represented a significant step in improving the ABS unit. ABS5.3 is the successor of ABS5.0 to achieve a highly compact, light weight inexpensive design, for the broad use of ABS in all passenger cars and light trucks. New technologies applied are the staking technique for hydraulic components, the use of microhybrid electronics design and solenoid coils being integrated within the attached electronic control unit. The unit can be manufactured in global alliance achieved by simultaneous engineering, applying CAD, FE-analysis, flow calculation and simulation, noise analysis and quality assurance which includes FMEA, error simulation, durability tests and the dry testing concept. The ABS5.3 design can be easily expanded to Traction Control (ASR).
Technical Paper

Methods for the Efficient Development and Optimization of Automotive Electrical Systems

1997-02-24
970301
In the last years, the requirements for electrical energy systems in motor vehicles have increased considerably. In the past, many studies were focused on single components of the electrical system. However, to shorten the development process, reduce costs, improve reliability and also to optimize the fuel consumption due to the electrical system, the electrical system must be regarded as a whole. The Robert Bosch GmbH has developed a simulation environment, which is intended to improve the development process of new vehicle electrical systems by means of computer simulation. On the basis of a freely selectable driving cycle and various driver models, it is possible to simulate the behavior of electrical energy supply structures. The model of the electrical system is coupled to a dynamic model of the drivetrain. The characteristics of this drivetrain can also be modified and various vehicle models can be selected for simulation.
Technical Paper

Simulation, Performance and Quality Evaluation of ABS and ASR

1988-02-01
880323
The article describes the methods, which are employed in order to ensure high performance, safety and quality of ABS and ASR. System behaviour is evaluated and optimized by computer simulation. Moreover, a real-time simulator has been developed by which the consequences of hardware defects can be investigated systematically, Despite the increasing use of simulation the testing of vehicles remains the most important tool for system evaluation. For that purpose, a digital data acquisition system has been developed and objective evaluation criteria have been established. In order to achieve high product quality the Failure Mode and Effect Analysis (FMEA) is carried out at an early phase of development. Another prerequisite for high product quality is thorough durability and endurance testing before release of production.
Technical Paper

Analysis of the Injection of Urea-Water-Solution for Automotive SCR DeNOx-Systems: Modeling of Two-Phase Flow and Spray/Wall-Interaction

2006-04-03
2006-01-0643
The selective catalytic reduction (SCR) based on urea-water-solution is an effective technique to reduce nitrogen oxides (NOx) emitted from diesel engines. A 3D numerical computer model of the injection of urea-water-solution and their interaction with the exhaust gas flow and exhaust tubing is developed to evaluate different configurations during the development process of such a DeNOx-system. The model accounts for all relevant processes appearing from the injection point to the entrance of the SCR-catalyst: momentum interaction between gas phase and droplets evaporation and thermolysis of droplets hydrolysis of isocyanic acid in gas phase heat transfer between wall and droplets spray/wall-interaction two-component wall film including interaction with gas phase and exhaust tube The single modeling steps are verified with visualizations, patternator measurements, phase-doppler-anemometer results and temperature measurements.
Technical Paper

Simulation for the Development of the Bosch-VDC

1996-01-26
960486
A new automotive active safely system, the Vehicle Dynamics Control System (VDC) of BOSCH was introduced on the market in 1995. Besides improving the ABS/ASR functions, VDC will also actively support the driver in critical situations of lateral vehicle dynamics. This system includes new ABS/ASR-control algorithms and a superimposed control algorithm, the vehicle dynamics controller. Furthermore, an extension of the standard ABS/ASR-hydraulic system was necessary as well as the development of new automotive sensors. During all phases of the interdisciplinary system development, tests on experimental cars and extensive computer simulations were used in parallel. In order to provide adequate simulation models for different tasks, a modular concept for the simulation tool is important. Furthermore, a transparent and portable application of the control algorithm for both, experiment and simulation, is required.
Technical Paper

Measurement and Simulation of Transients in Longitudinal and Lateral Tire Forces

1990-02-01
900210
The design of ABS- or vehicle control systems by means of computer simulation needs adequate tire models. Recordings of the wheel speed during ABS control show oscillations caused by the rapid pressure changes in the wheel brake cylinder. Investigations in lateral tire dynamics show a phase shift between the slip angle and the lateral tire force. These transients can not be explained by simulation if the usual stationary tire input-output behaviour is supposed. Thus the investigation of the oscillations requires a different approach to the modelling of the tire. In a first step measurements with an experimental car equipped with a computer for data acquisition and control and with various sensors - e.g. a Rotating Wheel Dynamometer - were carried out. The measurement results showed a correlation between the oscillations in the wheel speed and the braking force caused by the pressure pulses as well as high frequency oscillations in the lateral tire forces.
Journal Article

Side View Assist - The World’s First Rider Assistance System for Two-Wheelers

2016-11-08
2016-32-0052
The Side View Assist is the World’s first rider assistance system for two-wheelers. This is a Blind Spot Warning system, which uses four ultrasonic sensors to monitor the surrounding of the rider. Whenever there is a vehicle (i.e. a car, truck, or another motorbike) in the rider’s blind spot, the technology warns the rider with an optical signal close to the mirror. This will allow the rider to avoid a collision when changing lanes. In the current vehicle application, Side View Assist is active at speeds ranging from 25 to 80 kilometers per hour and supports riders whenever the difference in relative speed to other road users is small. The system helps to improve safety especially in cities, where heavy traffic makes it necessary to change lanes more often. Originally such systems have been developed for cars and different system solutions for cars have been in serial production for several years. The challenge was to adapt these systems so they would work for two-wheelers as well.
X