Refine Your Search

Topic

Author

Search Results

Journal Article

Development of a Direct Injection High Efficiency Liquid Phase LPG Spark Ignition Engine

2009-06-15
2009-01-1881
Direct Injection (DI) is believed to be one of the key strategies for maximizing the thermal efficiency of Spark Ignition (SI) engines and meet the ever-tightening emissions regulations. This paper explores the use of Liquefied Petroleum Gas (LPG) liquid phase fuel in a 1.5 liter SI four cylinder gasoline engine with double over head camshafts, four valves per cylinder, and centrally located DI injector. The DI injector is a high pressure, fast actuating injector enabling precise multiple injections of the finely atomized fuel sprays. With DI technology, the injection timing can be set to avoid fuel bypassing the engine during valve overlap into the exhaust system prior to combustion. The fuel vaporization associated with DI reduces combustion chamber and charge temperatures, thereby reducing the tendency for knocking. Fuel atomization quality supports an efficient combustion process.
Journal Article

Steady-State Combustion Development of a Downsized Multi-Cylinder Engine with Range Extended HCCI/SACI Capability

2013-04-08
2013-01-1655
This paper focuses on the combustion development portion of the Advanced Combustion Controls Enabling Systems and Solutions (ACCESS) project, a joint research project partially funded by a Department of Energy grant. The main goal of the project is to improve fuel economy in a gasoline fueled light-duty vehicle by 30% while maintaining similar performance and meeting SULEV emission standards for the Federal Test Procedure (FTP) cycle. In this study, several combustion modes Spark Ignited (SI), Homogeneous Charge Compression Ignition (HCCI), Spark- Assisted Compression Ignition (SACI)) were compared under various conditions (naturally aspirated, boosted, lean, and stoichiometric) to compare the methods of controlled auto-ignition on a downsized, boosted multi-cylinder engine with an advanced valvetrain system capable of operating under wide negative valve overlap (NVO) conditions.
Journal Article

An Integrated Model of Energy Transport in a Reciprocating, Lean Burn, Spark Ignition Engine

2015-04-14
2015-01-1659
This paper presents a combined experimental and numerical method for analysing energy flows within a spark ignition engine. Engine dynamometer data is combined with physical models of in-cylinder convection and the engine's thermal impedances, allowing closure of the First Law of Thermodynamics over the entire engine system. In contrast to almost all previous works, the coolant and metal temperatures are not assumed constant, but rather are outputs from this approach. This method is therefore expected to be most useful for lean burn engines, whose temperatures should depart most from normal experience. As an example of this method, the effects of normalised air-fuel ratio (λ), compression ratio and combustion chamber geometry are examined using a hydrogen-fueled engine operating from λ = 1.5 to λ = 6. This shows large variations in the in-cylinder wall temperatures and heat transfer with respect to λ.
Journal Article

Assessment of Cooled Low Pressure EGR in a Turbocharged Direct Injection Gasoline Engine

2015-04-14
2015-01-1253
The use of Low Pressure - Exhaust Gas Recirculation (EGR) is intended to allow displacement reduction in turbocharged gasoline engines and improve fuel economy. Low Pressure EGR designs have an advantage over High Pressure configurations since they interfere less with turbocharger efficiency and improve the uniformity of air-EGR mixing in the engine. In this research, Low Pressure (LP) cooled EGR is evaluated on a turbocharged direct injection gasoline engine with variable valve timing using both simulation and experimental results. First, a model-based calibration study is conducted using simulation tools to identify fuel efficiency gains of LP EGR over the base calibration. The main sources of the efficiency improvement are then quantified individually, focusing on part-load de-throttling of the engine, heat loss reduction, knock mitigation as well as decreased high-load fuel enrichment through exhaust temperature reduction.
Journal Article

Gasoline Fuel Injector Spray Measurement and Characterization - A New SAE J2715 Recommended Practice

2008-04-14
2008-01-1068
With increasingly stringent emissions regulations and concurrent requirements for enhanced engine thermal efficiency, a comprehensive characterization of the automotive gasoline fuel spray has become essential. The acquisition of accurate and repeatable spray data is even more critical when a combustion strategy such as gasoline direct injection is to be utilized. Without industry-wide standardization of testing procedures, large variablilities have been experienced in attempts to verify the claimed spray performance values for the Sauter mean diameter, Dv90, tip penetration and cone angle of many types of fuel sprays. A new SAE Recommended Practice document, J2715, has been developed by the SAE Gasoline Fuel Injection Standards Committee (GFISC) and is now available for the measurement and characterization of the fuel sprays from both gasoline direct injection and port fuel injection injectors.
Journal Article

SI Engine Hardware and Software Design for High Power, Low Emission Applications

2009-04-20
2009-01-0617
High technology, spark ignition direct injection (SIDI), engines are currently capable of achieving optimum horsepower and ULEV emissions levels. However, to meet the requirements of modern automotive powertrains, the task of increasing power density, improving fuel economy and reaching SULEV2 emissions is much more challenging. To achieve this, direct injection (DI) fuel systems offer the greatest precision and flexibility for engine fuel control. Features like high pressure start and improved catalyst heating, through multiple injections per combustion cycle, produce low engine-out emissions without the need for a secondary air injection system. This paper describes the analytical and experimental work done to achieve SULEV emissions levels for a twin-turbocharged derivative of General Motors (GM) high feature V6 engine.
Journal Article

Ethanol Detection in Flex-Fuel Direct Injection Engines Using In-Cylinder Pressure Measurements

2009-04-20
2009-01-0657
A method for detection of ethanol content in fuel for an engine equipped with direct injection (DI) is presented. The methodology is based on in-cylinder pressure measurements during the compression stroke and exploits the different charge cooling properties of ethanol and gasoline. The concept was validated using dynamometer data of a 2.0L DI turbocharged engine with variable valve timing (VVT). An algorithm was developed to process the experimental data and generate a residue from the complex cycle-to-cycle in-cylinder pressure evolution which captures the charge cooling effect. The experimental results show that there is a monotonic correlation between the residues and the fuel ethanol percentage in the majority of the cases. However, the correlation varies for different engine operating parameters; such as, speed, load, valve timing, fuel rail pressure, intake and exhaust temperature and pressure.
Journal Article

On-System Engine Cooling Fan Measurement as a Tool for Optimizing Cooling System Airflow Performance and Noise

2011-04-12
2011-01-1169
When designing the vehicle cooling system, accurate knowledge of the required airflow through the heat exchangers is necessary for proper specification of the cooling fan, the heat exchangers, and the associated electrical loads. The simplest method of expressing the engine cooling fan performance requirement is based on the “open air” performance curve measured on the airflow test chamber, excluding effects of the heat exchangers and vehicle environment. However, the difference between open air and on-system airflow performance and noise (installed on the heat exchangers) can be significant due to the influence of the heat exchangers, fan shroud, and downstream blockage on the airflow through the fan. If these factors are neglected in the evaluation of the cooling fan, incorrect specification of the fan performance can result.
Journal Article

Understanding the Dynamic Evolution of Cyclic Variability at the Operating Limits of HCCI Engines with Negative Valve Overlap

2012-04-16
2012-01-1106
An experimental study is performed for homogeneous charge compression ignition (HCCI) combustion focusing on late phasing conditions with high cyclic variability (CV) approaching misfire. High CV limits the feasible operating range and the objective is to understand and quantify the dominating effects of the CV in order to enable controls for widening the operating range of HCCI. A combustion analysis method is developed for explaining the dynamic coupling in sequences of combustion cycles where important variables are residual gas temperature, combustion efficiency, heat release during re-compression, and unburned fuel mass. The results show that the unburned fuel mass carries over to the re-compression and to the next cycle creating a coupling between cycles, in addition to the well known temperature coupling, that is essential for understanding and predicting the HCCI behavior at lean conditions with high CV.
Journal Article

A Comparative Study of a Spark Ignition Engine Running on Hydrogen, Synthesis Gas and Natural Gas

2013-04-08
2013-01-0229
This paper presents an experimental, numerical and theoretical study of the performance of the same spark ignition engine running on four different gaseous fuels: hydrogen, two synthesis gases and natural gas. Measurements of the brake thermal efficiency, the combustion variability, the engine out emissions and the indicated, pumping and friction mean effective pressures are first presented, with particular interest placed on the lean burn performance. Combustion analysis is then undertaken, with the crank angle resolved in-cylinder turbulence and the flame propagation plotted on the so-called ‘Bradley diagram’ for turbulent premixed combustion. The loci of the combustion events on the Bradley diagram are then used to explain the observed, relative performance of the engine running on these four fuels.
Journal Article

Design of a 4-Cylinder GTDI Engine with Part-Load HCCI Capability

2013-04-08
2013-01-0287
This paper focuses on the engine design portion of the Advanced Combustion Controls Enabling Systems and Solutions (ACCESS) project, a joint research project partially funded by a Department of Energy grant. The main goal of the project is to improve fuel economy in a gasoline fueled light-duty vehicle by 25% while maintaining similar performance and meeting SULEV emission standards. A Cadillac CTS with a high-feature naturally-aspirated 3.6L V6 engine was chosen as the baseline vehicle. To achieve the target fuel economy improvement over the baseline engine configuration, gasoline turbocharged direct-injection (GTDI) technology was utilized for engine downsizing in combination with part-load lean homogeneous charge compression ignition (HCCI) operation for further fuel economy gains. The GM 2.0L I4 GTDI Ecotec engine was used as the platform for the basis of this design.
Journal Article

Bio-Ketones: Autoignition Characteristics and Their Potential as Fuels for HCCI Engines

2013-10-14
2013-01-2627
This paper studies autoignition characteristics and HCCI engine combustion of ketone fuels, which are important constituents of recently discovered fungi-derived biofuels. Two ketone compounds, 2,4-dimethyl-3-pentanone (DMPN) and cyclopentanone (CPN), are systematically investigated in the Sandia HCCI engine, and the results are compared with conventional gasoline and neat ethanol. It is found that CPN has the lowest autoignition reactivity of all the biofuels and gasoline blends tested in this HCCI engine. The combustion timing of CPN is also the most sensitive to intake-temperature (Tin) variations, and it is almost insensitive to intake-pressure (Pin) variations. These characteristics and the overall HCCI performance of CPN are similar to those of ethanol. In contrast, DMPN shows multi-faceted autoignition characteristics. On the one hand, DMPN has strong temperature-sensitivity, even at boosted Pin, which is similar to the low-reactivity ethanol and CPN.
Technical Paper

High-Speed Imaging Study on the Effects of Internal Geometry on High-Pressure Gasoline Sprays

2020-09-15
2020-01-2111
High-pressure gasoline injection can improve combustion efficiency and lower engine-out emissions; however, the spray characteristics of high-pressure gasoline (>500 bar) are not well known. Effects of different injector nozzle geometry on high-pressure gasoline sprays were studied using a constant volume chamber. Five nozzles with controlled internal flow features including differences in nozzle inlet rounding, conicity, and outlet diameter were investigated. Reference grade gasoline was injected at fuel pressures of 300, 600, 900, 1200, and 1500 bar. The chamber pressure was varied using nitrogen at ambient temperature and pressures of 1, 5, 10, and 20 bar. Spray development was recorded using diffuse backlit shadowgraph imaging methods.
Technical Paper

Highly Turbocharging a Restricted, Odd Fire, Two Cylinder Small Engine - Design, Lubrication, Tuning and Control

2006-12-05
2006-01-3637
This paper describes the mechanical component design, lubrication, tuning and control aspects of a restricted, odd fire, highly turbocharged (TC) engine for Formula SAE competition. The engine was specifically designed and configured for the purpose, being a twin cylinder inline arrangement with double overhead camshafts and four valves per cylinder. Most of the engine components were specially cast or machined from billets. A detailed theoretical analysis was completed to determine engine specifications and operating conditions. Results from the analysis indicated a new engine design was necessary to sustain highly TC operation. Dry sump lubrication was implemented after initial oil surge problems were found with the wet sump system during vehicle testing. The design and development of the system is outlined, together with brake performance effects for the varying systems.
Technical Paper

The Feasibility of Downsizing a 1.25 Liter Normally Aspirated Engine to a 0.43 Liter Highly Turbocharged Engine

2007-09-16
2007-24-0083
In this paper, performance, efficiency and emission experimental results are presented from a prototype 434 cm3, highly turbocharged (TC), two cylinder engine with brake power limited to approximately 60 kW. These results are compared to current small engines found in today's automobile marketplace. A normally aspirated (NA) 1.25 liter, four cylinder, modern production engine with similar brake power output is used for comparison. Results illustrate the potential for downsized engines to significantly reduce fuel consumption while still maintaining engine performance. This has advantages in reducing vehicle running costs together with meeting tighter carbon dioxide (CO2) emission standards. Experimental results highlight the performance potential of smaller engines with intake boosting. This is demonstrated with the test engine achieving 25 bar brake mean effective pressure (BMEP).
Technical Paper

Hydrocarbon Emissions from a HAJI Equipped Ultra-lean Burn SI Engine

1998-02-23
980044
Hydrogen Assisted Jet Ignition (HAJI) is a novel method of maintaining combustion stability during ultra-lean operation of conventional, homogeneously charged, SI engines. When operating with HAJI above λ=2, CO and NOx emissions fall to low levels while HC emissions rise to approximately double their stoichiometric value. HC emissions were investigated by operating a HAJI equipped, optically accessible, four-valve single cylinder engine at 600 r/min, wide open throttle (WOT), and from λ=1 to λ=2.4. A fast flame ionisation detector was used to collect real time hydrocarbon concentration data from behind one of the exhaust valves, inside the HAJI pre-chamber, and from near the combustion chamber wall. Flame images were also obtained. Exhaust port sampling shows that the HC concentration during blowdown and early exhaust is increased, but the concentration at the end of exhaust is decreased.
Technical Paper

Optimizing the Design of the Air Flow Orifice or Restrictor for Race Car Applications

2007-08-05
2007-01-3553
Several race car competitions seek to limit engine power through a rule that requires all of the engine combustion air passes through a hole of prescribed diameter. As the approach and departure wall shapes to this hole, usually termed orifice or restrictor are not prescribed, there is opportunity for innovation in these shapes to obtain maximum flow and therefore power. This paper reports measurements made for a range of restrictor types including venturis with conical inlets and outlets of various angles and the application of slotted throats of the ‘Dall tube’ type. Although normal venturis have been optimized as subsonic flow measuring devices with minimum pressure losses, at the limit the flow in the throat is sonic and the down stream shocks associated with flow transition from sub-sonic to sonic are best handled with sudden angular changes and the boundary layer minimized by the corner slots between the convergent and divergent cones.
Technical Paper

Optimized Design of a Cyclic Variability Constrained Lean Limit SI Engine at Optimum NOx and Efficiency Using a PSO Algorithm

2007-08-05
2007-01-3551
In recent times new tools have emerged to aid the optimization of engine design. The particle swarm optimizer, used here is one of these tools. However, applying it to the optimization of the S.I. engine for high efficiency and low NOx emission has shown the preference of ultra lean burn strategy combined with high compression ratios. For combined power, efficiency and emissions benefits, there are two restricting factors, limiting the applicability of this strategy, knocking and cyclic variability. In the ultra lean region, knocking is not an important issue but the variability is a major concern. This paper demonstrates the application of a variability model to limit the search domain for the optimization program. The results show that variability constrains the possible gains in fuel consumption and emission reduction, through optimizing cam phasing, mixture and spark timing. The fuel consumption gain is reduced by about 11% relative.
Technical Paper

Why Liquid Phase LPG Port Injection has Superior Power and Efficiency to Gas Phase Port Injection

2007-08-05
2007-01-3552
This paper reports comparative results for liquid phase versus gaseous phase port injection in a single cylinder engine. It follows previous research in a multi-cylinder engine where liquid phase was found to have advantages over gas phase at most operating conditions. Significant variations in cylinder to cylinder mixture distribution were found for both phases and leading to uncertainty in the findings. The uncertainty was avoided in this paper as in the engine used, a high speed Waukesha ASTM CFR, identical manifold conditions could be assured and MBT spark found for each fuel supply system over a wide range of mixtures. These were extended to lean burn conditions where gaseous fuelling in the multi-cylinder engine had been reported to be at least an equal performer to liquid phase. The experimental data confirm the power and efficiency advantages of liquid phase injection over gas phase injection and carburetion in multi-cylinder engine tests.
Technical Paper

Compression Ratio Effects on Performance, Efficiency, Emissions and Combustion in a Carbureted and PFI Small Engine

2007-08-05
2007-01-3623
This paper compares the performance, efficiency, emissions and combustion parameters of a prototype two cylinder 430 cm3 engine which has been tested in a variety of normally aspirated (NA) modes with compression ratio (CR) variations. Experiments were completed using 98-RON pump gasoline with modes defined by alterations to the induction system, which included carburetion and port fuel injection (PFI). The results from this paper provide some insight into the CR effects for small NA spark ignition (SI) engines. This information provides future direction for the development of smaller engines as engine downsizing grows in popularity due to rising oil prices and recent carbon dioxide (CO2) emission regulations. Results are displayed in the engine speed, manifold absolute pressure (MAP) and CR domains, with engine speeds exceeding 10000 rev/min and CRs ranging from 9 to 13. Combustion analysis is also included, allowing mass fraction burn (MFB) comparison.
X