Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Effects of Real-Fluid Thermodynamics on High-Pressure Fuel Injection Processes

This paper first summarizes a new theoretical description that quantifies the effects of real-fluid thermodynamics on liquid fuel injection processes as a function of pressure at typical engine operating conditions. It then focuses on the implications this has on modeling such flows with emphasis on application of the Large Eddy Simulation (LES) technique. The theory explains and quantifies the major differences that occur in the jet dynamics compared to that described by classical spray theory in a manner consistent with experimental observations. In particular, the classical view of spray atomization as an appropriate model at some engine operating conditions is questionable. Instead, non-ideal real-fluid behavior must be taken into account using a multicomponent formulation that applies to hydrocarbon mixtures at high-pressure supercritical conditions.
Journal Article

Detailed Modeling and Simulation of High-Pressure Fuel Injection Processes in Diesel Engines

This paper provides an analysis of high-pressure phenomena and its potential effects on the fundamental physics of fuel injection in Diesel engines. In particular, we focus on conditions when cylinder pressures exceed the thermodynamic critical pressure of the injected fuel and describe the major differences that occur in the jet dynamics compared to that described by classical spray theory. To facilitate the analysis, we present a detailed model framework based on the Large Eddy Simulation (LES) technique that is designed to account for key high-pressure phenomena. This framework is then used to perform a thermodynamic analysis of the flow. We focus on the experiments being conducted in the high-pressure combustion vessel at Sandia National Laboratories using n-heptane as a reference fuel. The calculations are performed by rigorously treating the experimental geometry and operating conditions, with detailed treatment of relevant thermophysical mixture properties.