Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Improving the NOX-CO2 Trade-Off of an HCCI Engine Using a Multi-Hole Injector

The combustion and emission performance of two high-pressure GDI-type injectors are compared in an automotive HCCI engine during low-load, stratified operation. One of these, an 8-hole injector with 70° spray angle, provides significant reduction in NOX emissions at a given fuel-to-CO2 conversion efficiency (i.e., an improved NOX-CO2 trade-off) compared to the other, a 53° swirl injector. In contrast, attempts to enhance the NOX-CO2 trade-off using alternate charge-stratification strategies such as split injection and high intake velocity are shown to be less successful. The 8-hole and swirl injectors are also compared using the optical techniques of Mie scattering (spray visualization), laser-induced fluorescence imaging (fuel distribution measurement), and direct combustion imaging. The resulting data suggest two possible explanations for the superior performance of the 8-hole injector.
Journal Article

Pathline Analysis of Full-cycle Four-stroke HCCI Engine Combustion Using CFD and Multi-Zone Modeling

This paper investigates flow and combustion in a full-cycle simulation of a four-stroke, three-valve HCCI engine by visualizing the flow with pathlines. Pathlines trace massless particles in a transient flow field. In addition to visualization, pathlines are used here to trace the history, or evolution, of flow fields and species. In this study evolution is followed from the intake port through combustion. Pathline analysis follows packets of intake charge in time and space from induction through combustion. The local scalar fields traversed by the individual packets in terms of velocity magnitude, turbulence, species concentration and temperatures are extracted from the simulation results. The results show how the intake event establishes local chemical and thermal environments in-cylinder and how the species respond (chemically react) to the local field.
Journal Article

Dual-Wavelength PLIF Measurements of Temperature and Composition in an Optical HCCI Engine with Negative Valve Overlap

Negative valve overlap (NVO) is a valve strategy employed to retain and recompress residual burned gases to assist HCCI combustion, particularly in the difficult regime of low-load operation. NVO allows the retention of large quantities of hot residual burned gases as well as the possibility of fuel addition for combustion control purposes. Reaction of fuel injected during NVO increases charge temperature, but in addition could produce reformed fuel species that may affect main combustion phasing. The strategy holds potential for controlling and extending low-load HCCI combustion. The goal of this work is to demonstrate the feasibility of applying two-wavelength PLIF of 3-pentanone to obtain simultaneous, in-cylinder temperature and composition images during different parts of the HCCI/NVO cycle. Measurements are recorded during the intake and main compression strokes, as well as during the more challenging periods of NVO recompression and re-expansion.