Refine Your Search

Search Results

Viewing 1 to 9 of 9
Journal Article

Effect of Post Injections on In-Cylinder and Exhaust Soot for Low-Temperature Combustion in a Heavy-Duty Diesel Engine

2010-04-12
2010-01-0612
Multiple fuel-injections during a single engine cycle can reduce combustion noise and improve pollutant emissions tradeoffs. Various hypotheses have been proposed in the literature regarding the in-cylinder processes responsible for the pollutant emissions improvements. This paper provides a brief overview of these hypotheses along with an investigation exploring which of these mechanisms are important for post injections under low-temperature combustion (LTC) conditions in a heavy-duty diesel engine. In-cylinder soot and exhaust smoke are measured by 2-color soot thermometry and filter paper blackening, respectively. The evolution and interaction of soot regions from each of the injections is visualized using high-speed imaging of soot luminosity, both in the piston bowl and in the squish regions.
Journal Article

RCCI Combustion Regime Transitions in a Single-Cylinder Optical Engine and a Multi-Cylinder Metal Engine

2017-09-04
2017-24-0088
Reactivity Controlled Compression Ignition (RCCI) is an approach to increase engine efficiency and lower engine-out emissions by using in-cylinder stratification of fuels with differing reactivity (i.e., autoignition characteristics) to control combustion phasing. Stratification can be altered by varying the injection timing of the high-reactivity fuel, causing transitions across multiple regimes of combustion. When injection is sufficiently early, combustion approaches a highly-premixed autoignition regime, and when it is sufficiently late it approaches more mixing-controlled, diesel-like conditions. Engine performance, emissions, and control authority over combustion phasing with injection timing are most favorable in between, within the RCCI regime.
Journal Article

Guidelines for Interpreting Soot Luminosity Imaging

2017-03-28
2017-01-0716
One way to develop an understanding of soot formation and oxidation processes that occur during direct injection and combustion in an internal combustion engine is to image the natural luminosity from soot over time. Imaging is possible when there is optical access to the combustion chamber. After the images are acquired, the next challenge is to properly interpret the luminous distributions that have been captured on the images. A major focus of this paper is to provide guidance on interpretation of experimental images of soot luminosity by explaining how radiation from soot is predicted to change as it is transmitted through the combustion chamber and to the imaging. The interpretations are only limited by the scope of the models that have been developed for this purpose. The end-goal of imaging radiation from soot is to estimate the amount of soot that is present.
Journal Article

Effects of Post-Injection Strategies on Near-Injector Over-Lean Mixtures and Unburned Hydrocarbon Emission in a Heavy-Duty Optical Diesel Engine

2011-04-12
2011-01-1383
Post-injection strategies aimed at reducing engine-out emissions of unburned hydrocarbons (UHC) were investigated in an optical heavy-duty diesel engine operating at a low-load, low-temperature combustion (LTC) condition with high dilution (12.7% intake oxygen) where UHC emissions are problematic. Exhaust gas measurements showed that a carefully selected post injection reduced engine-out load-specific UHC emissions by 20% compared to operation with a single injection in the same load range. High-speed in-cylinder chemiluminescence imaging revealed that without a post injection, most of the chemiluminescence emission occurs close to the bowl wall, with no significant chemiluminescence signal within 27 mm of the injector. Previous studies have shown that over-leaning in this near-injector region after the end of injection causes the local equivalence ratio to fall below the ignitability limit.
Journal Article

Optical Investigation of the Reduction of Unburned Hydrocarbons Using Close-Coupled Post Injections at LTC Conditions in a Heavy-Duty Diesel Engine

2013-04-08
2013-01-0910
Partially premixed low-temperature combustion (LTC) using exhaust-gas recirculation (EGR) has the potential to reduce engine-out NOx and soot emissions, but increased unburned hydrocarbon (UHC) emissions need to be addressed. In this study, we investigate close-coupled post injections for reducing UHC emissions. By injecting small amounts of fuel soon after the end of the main injection, fuel-lean mixtures near the injector that suffer incomplete combustion can be enriched with post-injection fuel and burned to completion. The goal of this work is to understand the in-cylinder mechanisms affecting the post-injection efficacy and to quantify its sensitivity to operational parameters including post-injection duration, injection dwell, load, and ignition delay time of the post-injection mixture.
Journal Article

Post Injections for Soot Reduction in Diesel Engines: A Review of Current Understanding

2013-04-08
2013-01-0917
This work is a technical review of past research and a synthesis of current understanding of post injections for soot reduction in diesel engines. A post injection, which is a short injection after a longer main injection, is an in-cylinder tool to reduce engine-out soot to meet pollutant emissions standards while maintaining efficiency, and potentially to reduce or eliminate exhaust aftertreatment. A sprawling literature on post injections documents the effects of post injections on engine-out soot with variations in many engine operational parameters. Explanations of how post injections lead to engine-out soot reduction vary and are sometimes inconsistent or contradictory, in part because supporting fundamental experimental or modeling data are often not available. In this paper, we review the available data describing the efficacy of post-injections and highlight several candidate in-cylinder mechanisms that may control their efficacy.
Technical Paper

Effects of an Annular Piston Bowl-Rim Cavity on In-Cylinder and Engine-Out Soot of a Heavy-Duty Optical Diesel Engine

2021-04-06
2021-01-0499
The effect of an annular, piston bowl-rim cavity on in-cylinder and engine-out soot emissions is measured in a heavy-duty, optically accessible, single-cylinder diesel engine using in-cylinder soot diagnostics and exhaust smoke emission measurements. The baseline piston configuration consists of a right-cylindrical bowl, while the cavity-piston configuration features an additional annular cavity that is located below the piston bowl-rim and connected to the main-combustion chamber through a thin annular passage, accounting for a 3% increase in the clearance volume, resulting in a reduction in geometric compression ratio (CR) from 11.22 to 10.91. Experiments using the cavity-piston configuration showed a significant reduction of engine-out smoke ranging from 20-60% over a range of engine loads.
Technical Paper

Investigation of Fuel Condensation Processes under Non-reacting Conditions in an Optically-Accessible Engine

2019-04-02
2019-01-0197
Engine experiments have revealed the importance of fuel condensation on the emission characteristics of low temperature combustion. However, direct in-cylinder experimental evidence has not been reported in the literature. In this paper, the in-cylinder condensation processes observed in optically accessible engine experiments are first illustrated. The observed condensation processes are then simulated using state-of-the-art multidimensional engine CFD simulations with a phase transition model that incorporates a well-validated phase equilibrium numerical solver, in which a thermodynamically consistent phase equilibrium analysis is applied to determine when mixtures become unstable and a new phase is formed. The model utilizes fundamental thermodynamics principles to judge the occurrence of phase separation or combination by minimizing the system Gibbs free energy.
Journal Article

Dilution and Injection Pressure Effects on Ignition and Onset of Soot at Threshold-Sooting Conditions by Simultaneous PAH-PLIF and Soot-PLII Imaging in a Heavy Duty Optical Diesel Engine

2019-04-02
2019-01-0553
Although accumulated in-cylinder soot can be measured by various optical techniques, discerning soot formation rates from oxidation rates is more difficult. Various optical measurements have pointed toward ways to affect in-cylinder soot oxidation, but evidence of effects of operational variables on soot formation is less plentiful. The formation of soot and its precursors, including polycyclic aromatic hydrocarbons (PAHs), are strongly dependent on temperature, so factors affecting soot formation may be more evident at low-temperature combustion conditions. Here, in-cylinder PAHs are imaged by planar laser-induced fluorescence (PAH-PLIF) using three different excitation wavelengths of 355, 532, and 633 nm, to probe three different size-classes of PAH from 2-3 to 10+ rings. Simultaneous planar laser-induced incandescence of soot (soot-PLII) using 1064-nm excitation provides complementary imaging of soot formation near inception.
X