Refine Your Search

Topic

Author

Affiliation

Search Results

Video

Boosted HCCI Combustion Using Low-Octane Gasoline with Fully Premixed and Partially Stratified Charges

2012-06-18
High-load HCCI combustion has recently been demonstrated with conventional gasoline using intake pressure boosting. The key is to control the high combustion heat release rates (HRR) by using combustion timing retard and mixture stratification. However, at naturally aspirated and moderately boosted conditions, these techniques did not work well due to the low autoignition reactivity of conventional gasoline at these conditions. This work studies a low-octane distillate fuel with similar volatility to gasoline, termed Hydrobate, for its potential in HCCI engine combustion at naturally aspirated and low-range boosted conditions. The HCCI combustion with fully premixed and partially stratified charges was examined at intake pressures (Pin) from 100 to 180 kPa and constant intake temperature (60�C) and engine speed (1200 rpm).
Video

Future Development of EcoBoost Technology

2012-05-10
Ford's EcoBoost GTDI engine technology (Gasoline Direct Injection, Turbo-charging and Downsizing) is being successfully implemented in the market place with the EcoBoost option accounting for significant volumes in vehicle lines as diverse as the F150 pickup truck, Edge CUV and the Lincoln MKS luxury sedan. A logical question would be what comes after GTDI? This presentation will review some of the technologies that will be required for further improvements in CO2, efficiency and performance building on the EcoBoost foundation as well as some of the challenges inherent in the new technologies and approaches. Presenter Eric W. Curtis, Ford Motor Co.
Technical Paper

EGR and Intake Boost for Managing HCCI Low-Temperature Heat Release over Wide Ranges of Engine Speed

2007-01-23
2007-01-0051
Reaching for higher loads and improving combustion-phasing control are important challenges for HCCI research. Although HCCI engines can operate with a variety of fuels, recent research has shown that fuels with two-stage autoignition have some significant advantages for overcoming these challenges. Because the amount of low-temperature heat release (LTHR) is proportional to the local equivalence ratio (ϕ), fuel stratification can be used to adjust the combustion phasing (CA50) and/or burn duration using various fuel-injection strategies. Two-stage ignition fuels also allow stable combustion even for extensive combustion-phasing retard, which reduces the knocking propensity. Finally, the LTHR reduces the required intake temperature, which increases the inducted charge mass for a given intake pressure, allowing higher fueling rates before knocking and NOx emissions become a problem. However, the amount of LTHR is normally highly dependent on the engine speed.
Technical Paper

Thermodynamic and Chemical Effects of EGR and Its Constituents on HCCI Autoignition

2007-04-16
2007-01-0207
EGR can be used beneficially to control combustion phasing in HCCI engines. To better understand the function of EGR, this study experimentally investigates the thermodynamic and chemical effects of real EGR, simulated EGR, dry EGR, and individual EGR constituents (N2, CO2, and H2O) on the autoignition processes. This was done for gasoline and various PRF blends. The data show that addition of real EGR retards the autoignition timing for all fuels. However, the amount of retard is dependent on the specific fuel type. This can be explained by identifying and quantifying the various underlying mechanisms, which are: 1) Thermodynamic cooling effect due to increased specific-heat capacity, 2) [O2] reduction effect, 3) Enhancement of autoignition due to the presence of H2O, 4) Enhancement or suppression of autoignition due to the presence of trace species such as unburned or partially-oxidized hydrocarbons.
Technical Paper

Quantitative Mixing Measurements in a Vaporizing Diesel Spray by Rayleigh Imaging

2007-04-16
2007-01-0647
This paper details the development and application of a Rayleigh imaging technique for quantitative mixing measurements in a vaporizing diesel spray under engine conditions. Experiments were performed in an optically accessible constant-volume combustion vessel that simulated the ambient conditions in a diesel engine. Two-dimensional imaging of Rayleigh scattering from a diesel spray of n-heptane and well-characterized ambient was accomplished by using a 532 nm Nd:YAG laser sheet and a low-noise back-illuminated CCD camera. Methods to minimize interference from unwanted elastic scattering sources (e.g. windows, particles) were investigated and are discussed in detail. The simultaneous measurement of Rayleigh scattering signal from the ambient and from the diesel spray provides important benefits towards making the technique quantitative and accurate.
Technical Paper

A Qualitative Evaluation of Mixture Formation in a Direct-Injection Hydrogen-Fuelled Engine

2007-04-16
2007-01-1467
In an optically-accessible single-cylinder engine fuelled with hydrogen, OH* chemiluminescence imaging and planar laser induced fluorescence (PLIF) are used to qualitatively evaluate in-cylinder mixture formation. The experiments include measurements for engine operation with hydrogen injection in-cylinder either prior to or after intake valve closure (IVC). Pre-IVC injection is used to produce a near homogeneous mixture in-cylinder to establish a baseline comparison for post-IVC injection. To assess the effects of injection pressure on mixture formation, two injection pressures are used for post-IVC injection. For post-IVC injection with start of injection (SOI) coincident with IVC, mixture distribution is similar to pre-IVC injection and there are little differences between the two injection pressures. With retard of SOI from IVC, mixture inhomogeneities increase monotonically for both injection pressures.
Technical Paper

Operational Characteristics of Oxygenate-Water Fuel Blends Studied in an Optical DI Diesel Engine with Simulated Exhaust Gas Recirculation

2007-07-23
2007-01-2017
Engine combustion strategies that preserve high cycle efficiency while minimizing engine-out pollutant emissions are the focus of major research efforts around the world. Such high efficiency clean combustion (HECC) strategies typically employ compression ignition of a charge that exhibits an elevated degree of fuel/air premixing and/or dilution with combustion products. Prior studies have shown that a highly dilute, mixing-controlled combustion strategy using a high-cetane, oxygenated fuel can achieve HECC while avoiding the control, high-load knock, and light-load incomplete combustion difficulties that are often experienced with approaches that use a high degree of charge premixing. On the other hand, employing high dilution levels (e.g., by using large amounts of cooled exhaust gas recirculation, EGR) can place excessive burdens on engine heat exchangers and air-handling systems.
Technical Paper

Gear Whine Improvements for an Automatic Transmission through Design Retargeting and Manufacturing Variability Reduction

2001-04-30
2001-01-1505
Gear whine in 1st gear for an automatic transmission that has been in production for nearly thirty years was identified as an NVH issue. Due to advances in vehicle level refinement, and reduction of other masking noises, the automatic transmission gear whine became an issue with the customer. Since the transmission was already in production, the improvements had to be within the boundaries of manufacturing feasibility with existing equipment to avoid costly and time consuming investment in new machines. The approach used was one of identifying optimum values of existing gear parameters to provide a reduction in passenger compartment noise. The problem was in a light truck application. Objective noise measurements were recorded for 10 transmissions from more than 50 driven in vehicles. The transmissions were disassembled and the gears inspected.
Technical Paper

Analytical and Experimental Techniques in Solving the Plastic Intake Manifold NVH

2001-04-30
2001-01-1544
The intent of this paper is to summarize the work of the V8 power plant intake manifold radiated noise study. In a particular V8 engine application, customer satisfaction feedback provided observations of existing unpleasant noise at the driver's ear. A comprehensive analysis of customer data indicated that a range from 500 to 800 Hz suggests a potential improvement in noise reduction at the driver's ear. In this study the noise source was determined using various accelerometers located throughout the valley of the engine and intake manifold. The overall surface velocity of the engine valley was ranked with respect to the overall surface velocity of the intake manifold. An intensity mapping technique was also used to determine the major component noise contribution. In order to validate the experimental findings, a series of analysis was also conducted. The analysis model included not only the plastic intake manifold, but also the whole powertrain.
Technical Paper

Development and Validation of a Computational Process for Pass-By Noise Simulation

2001-04-30
2001-01-1561
The Indirect Boundary Element Analysis is employed for developing a computational pass-by noise simulation capability. An inverse analysis algorithm is developed in order to generate the definition of the main noise sources in the numerical model. The individual source models are combined for developing a system model for pass-by noise simulation. The developed numerical techniques are validated through comparison between numerical results and test data for component level and system level analyses. Specifically, the source definition capability is validated by comparing the actual and the computationally reconstructed acoustic field for an engine intake manifold. The overall pass-by noise simulation capability is validated by computing the maximum overall sound pressure level for a vehicle under two separate driving conditions.
Technical Paper

A New Method for Calculating Fluctuation Strength in Electric Motors

2001-04-30
2001-01-1588
In assessing the sound quality of electric motors (e.g., seat, mirror, and adjustable pedal motors), the sensation of Fluctuation Strength - a measure of intensity or frequency variation - has become important. For electric motors, it is typically caused by variation in the load, creating frequency modulation in the sound. An existing method for calculating Fluctuation Strength proved useful initially, but more extensive testing identified unacceptable performance. There were unacceptable levels of both false positives and false negatives. A new method is presented, which shows improved correlation with perceived fluctuation in sounds. Comparisons are made to the previous method and improvement is shown through examples of objective-subjective correlation for both seat motor sounds and adjustable pedal motor sounds. The new method is also shown to match subjective data from which the original measure of Fluctuation Strength was derived.
Technical Paper

Engine Excitation Decomposition Methods and V Engine Results

2001-04-30
2001-01-1595
Engine excitation forces have been studied in the past using one of two methods; a lumped sum or a totally distributed approach. The lumped sum approach gives the well-understood engine inherent unbalance and the totally distributed approach is used in engine CAE models to determine the overall engine response. The approach that will be described in this paper identifies an intermediate level of sophistication. The methodology implemented considers single cylinder forces on the engine block, piston side thrust and main bearing forces, and decomposes them into their order content. The forces are then phased and geometrically distributed appropriately for each cylinder and then each order is analyzed relative to know distributions that are NVH concerns, V-block breathing, block side wall breathing, and block lateral and vertical bending.
Technical Paper

Update on Engine Combustion Research at Sandia National Laboratories

2001-05-14
2001-01-2060
The objectives of this paper are to describe the research efforts in diesel engine combustion at Sandia National Laboratories' Combustion Research Facility and to provide recent experimental results. We have four diesel engine experiments supported by the Department of Energy, Office of Heavy Vehicle Technologies: a one-cylinder version of a Cummins heavy-duty engine, a diesel simulation facility, a one-cylinder Caterpillar engine to evaluate combustion of alternative fuels, and a homogeneous-charge, compression-ignition (HCCI) engine. Recent experimental results of diesel combustion research will be discussed and a description will be given of our HCCI experimental program and of our HCCI modeling work.
Technical Paper

Qualitative Laser-Induced Incandescence Measurements of Particulate Emissions During Transient Operation of a TDI Diesel Engine

2001-09-24
2001-01-3574
Laser-induced incandescence (LII) is a sensitive diagnostic technique capable of making exhaust particulate-matter measurements during transient operating conditions. This paper presents measurements of LII signals obtained from the exhaust gas of a 1.9-L TDI diesel engine. A scanning mobility particle sizer (SMPS) is used in fixed-size mode to obtain simultaneous number concentration measurements in real-time. The transient studies presented include a cranking-start/idle/shutdown sequence, on/off cycling of EGR, and rapid load changes. The results show superior temporal response of LII compared to the SMPS. Additional advantages of LII are that exhaust dilution and cooling are not required, and that the signal amplitude is directly proportional to the carbon volume fraction and its temporal decay is related to the primary particle size.
Technical Paper

Fuel Economy Benefit of Cylinder Deactivation - Sensitivity to Vehicle Application and Operating Constraints

2001-09-24
2001-01-3591
A Variable Displacement Engine (VDE) improves fuel economy by deactivating half the cylinders at light load. The actual fuel economy benefit attained in the vehicle depends on how often cylinders can be deactivated, which is a function of test cycle, engine size, and vehicle weight. In practice, cylinder deactivation will also be constrained by NVH (noise, vibration, and harshness). This paper presents fuel economy projections for VDE in several different engine and vehicle applications. Sensitivity to NVH considerations is quantified by calculating fuel economy with and without cylinder deactivation in various operating modes: idle, low engine speed, 1st and 2nd gear, and warm-up after cold start. The effects of lug limits and calibration hysteresis are also presented.
Technical Paper

Dilution Effects on the Controlled Auto-Ignition (CAI) Combustion of Hydrocarbon and Alcohol Fuels

2001-09-24
2001-01-3606
This paper presents results from an experimental programme researching the in-cylinder conditions necessary to obtain homogenous CAI (or HCCI) combustion in a 4-stroke engine. The fuels under investigation include three blends of Unleaded Gasoline, a 95 RON Primary Reference Fuel, Methanol, and Ethanol. This work concentrates on establishing the CAI operating range with regard to Air/Fuel ratio and Exhaust Gas Re-circulation and their effect on the ignition timing, combustion rate and variability, Indicated thermal efficiency, and engine-out emissions such as NOx. Detailed maps are presented, defining how each of the measured variables changes over the entire CAI region. Results indicate that the alcohols have significantly higher tolerance to dilution than the hydrocarbon fuels tested. Also, variations in Gasoline blend have little effect on any of the combustion parameters measured.
Technical Paper

Research and Development of Controlled Auto-Ignition (CAI) Combustion in a 4-Stroke Multi-Cylinder Gasoline Engine

2001-09-24
2001-01-3608
Controlled Auto-Ignition (CAI) combustion has been achieved in a production type 4-stroke multi-cylinder gasoline engine. The engine was based on a Ford 1.7L Zetec-SE 16V engine with a compression ratio of 10.3, using substantially standard components modified only in design dimensions to control the gas exchange process in order to significantly increase the trapped residuals. The engine was also equipped with Variable Cam Timing (VCT) on both the intake and exhaust camshafts. It was found that the largely increased trapped residuals alone were sufficient to achieve CAI in this engine and with VCT, a range of loads between 0.5 and 4 bar BMEP and engine speeds between 1000 and 3500 rpm were mapped for CAI fuel consumption and exhaust emissions. The measured CAI results were compared with those of Spark Ignition (SI) combustion in the same engine but with standard camshafts at the same speeds and loads.
Technical Paper

Dimethoxy Methane in Diesel Fuel: Part 1. The Effect of Fuels and Engine Operating Modes on Emissions of Toxic Air Pollutants and Gas/Solid Phase PAH

2001-09-24
2001-01-3627
The objective of this study was to quantify engine-out emissions of potentially toxic compounds from a modern diesel engine operated with different fuels including 15% v/v dimethoxy methane in a low sulfur diesel fuel. Five diesel fuels were examined: a low-sulfur, low-aromatic hydrocracked (∼1 ppm) fuel, the same low sulfur fuel containing 15% v/v dimethoxy methane, a Fischer-Tropsch fuel, a CARB fuel, and an EPA number 2 certification fuel. A DaimlerChrysler OM611 CIDI engine was controlled with a SwRI Rapid Prototyping Electronic Control system. The engine was operated over 4 speed-load modes. Each operating mode and fuel combination was run in triplicate. Thirty three potentially toxic compounds were measured for each fuel and mode.
X