Refine Your Search

Topic

Search Results

Technical Paper

Adaptive Optimal Management Strategy for Hybrid Vehicles Based on Pontryagin’s Minimum Principle

2020-04-14
2020-01-1191
The energy management strategies (EMS) for hybrid electric vehicles (HEV) have a great impact on the fuel economy (FE). The Pontryagin's minimum principle (PMP) has been proved to be a viable control strategy for HEV. The optimal costate of the PMP control can be determined by the given information of the driving conditions. Since the full knowledge of future driving conditions is not available, this paper proposed a dynamic optimization method for PMP costate without the prediction of the driving cycle. It is known that the lower fuel consumption the method yields, the more efficiently the engine works. The selection of costate is designed to make the engine work in the high efficiency range. Compared with the rule-based control, the proposed method by the principle of Hamiltonian, can make engine working points have more opportunities locating in the middle of high efficiency range, instead of on the boundary of high efficiency range.
Journal Article

Study on Vehicle Stability Control by Using Model Predictive Controller and Tire-road Force Robust Optimal Allocation

2015-04-14
2015-01-1580
The vehicle chassis integrated control system can improve the stability of vehicles under extreme conditions using tire force allocation algorithm, in which, the nonlinearity and uncertainty of tire-road contact condition need to be taken into consideration. Thus, An MPC (Model Predictive Control) controller is designed to obtain the additional steering angle and the additional yaw moment. By using a robust optimal allocation algorithm, the additional yaw moment is allocated to the slip ratios of four wheels. An SMC (Sliding-Mode Control) controller is designed to maintain the desired slip ratio of each wheel. Finally, the control performance is verified in MATLAB-CarSim co-simulation environment with open-loop manoeuvers.
Journal Article

Analyzing the Cycle-to-Cycle Variations of Vapor and Liquid Phases of Evaporating SIDI Sprays via Proper Orthogonal Decomposition Technique

2015-09-01
2015-01-1901
In this study, the spray characteristics of three multi-hole injectors, namely a 2-hole injector, a 4-hole injector, and a 6-hole injector were investigated under various superheated conditions. Fuel pressure was kept constant at 10MPa. Fuel temperature varied from 20°C to 85°C, and back pressure ranged from 20kPa to 100kPa. Both liquid phase and vapor phase of the spray were investigated via laser induced exciplex fluorescence technique. Proper orthogonal decomposition technique was applied to analyze the cycle-to-cycle variations of the liquid phase and vapor phase of the fuel spray separately. Effects of fuel temperature, back pressure, superheated degree and nozzle number on spray variation were revealed. It shows that higher fuel temperature led to a more stable spray due to enhanced evaporation which eliminated the fluctuating structures along the spray periphery. Higher back pressure led to higher spray variation due to increased interaction between spray and ambient air.
Journal Article

Impact of Fuel Sprays on In-Cylinder Flow Length Scales in a Spark-Ignition Direct-Injection Engine

2017-03-28
2017-01-0618
The interaction of fuel sprays and in-cylinder flow in direct-injection engines is expected to alter kinetic energy and integral length scales at least during some portions of the engine cycle. High-speed particle image velocimetry was implemented in an optical four-valve, pent-roof spark-ignition direct-injection single-cylinder engine to quantify this effect. Non-firing motored engine tests were performed at 1300 RPM with and without fuel injection. Two fuel injection timings were investigated: injection in early intake stroke represents quasi-homogenous engine condition; and injection in mid compression stroke mimics the stratified combustion strategy. Two-dimensional crank angle resolved velocity fields were measured to examine the kinetic energy and integral length scale through critical portions of the engine cycle. Reynolds decomposition was applied on the obtained engine flow fields to extract the fluctuations as an indicator for the turbulent flow.
Technical Paper

Effect of Spray Characteristics on the Combustion Process in an Optical Engine

2020-04-14
2020-01-0288
Flash boiling is considered a useful method in enhancing the liquid fuel jet break-up and spray atomization process for internal combustion engine applications. Spray atomization efficiency plays a vital role in the combustion process. Although some researches have demonstrated that flash boiling has the potential to improve the combustion efficiency and optimize emission-related issues, the effect of flash boiling spray characteristics on the combustion process has not been fully investigated. In this paper, spray characteristics and its related combustion process were studied via various non-intrusive diagnostics methods. The spray and combustion process under different test conditions were studied using an optical engine. It was found that by using flash boiling atomization, the combustion duration was reduced and IMEP enhanced significantly. Experimental results have built the relationship between flash boiling spray characteristics and the combustion performance in the engine.
Technical Paper

Influence of Port Water Injection on the Combustion Characteristics and Exhaust Emissions in a Spark-Ignition Direct-Injection Engine

2020-04-14
2020-01-0294
It is well known that engine downsizing is still the main energy-saving technology for spark-ignition direct-injection (SIDI) engine. However, with the continuous increase of the boosting ratio, the gasoline engine is often accompanied by the occurrence of knocking, which has the drawback to run the engine at retarded combustion phasing. Besides, in order to protect the turbine blades from being sintered by high exhaust temperature, the strategies of fuel enrichment are often taken to reduce the combustion temperature, which ultimately leads to a high level of particulate number emission. Therefore, to address the issues discussed above, the port water injection (PWI) techniques on a 1.2-L turbocharged, three-cylinder, SIDI engine were investigated. Measurements indicate that the optimization of spark timing has a significant impact on its performance.
Technical Paper

Combustion Characterization of Neat n-Butanol in an SI Engine

2020-04-14
2020-01-0334
Increasingly stringent emission standards have promoted the interest in alternate fuel sources. Because of the comparable energy density to the existing fossil fuels and renewable production, alcohol fuels may be a suitable replacement, or an additive to the gasoline/diesel fuels to meet the future emission standards with minimal modification to current engine geometry. In this research, the combustion characteristics of neat n-butanol are analyzed under spark ignition operation using a single cylinder SI engine. The fuel is injected into the intake manifold using a port-fuel injector. Two modes of charge dilution were used in this investigation to test the limits of stable engine operation, namely lean burn using excess fresh air and exhaust gas recirculation (EGR). The in-cylinder pressure measurement and subsequently, heat release analysis are used to investigate the combustion characteristics of the fuel under low load SI engine operation.
Journal Article

In-Flame Soot Sampling and Morphology Analysis in an Optical Spark-Ignition Direct-Injection (SIDI) Engine

2018-04-03
2018-01-1418
Stringent particulate emission regulations are applied to spark-ignition direct-injection (SIDI) engines, calling for a significant in-cylinder reduction of soot particles. To enhance fundamental knowledge of the soot formation and oxidation process inside the cylinder of the engine, a new in-flame particle sampling system has been developed and implemented in a working optical SIDI engine with a side-mounted, wall-guided injection system. Using the sampling probes installed on the piston top, the soot particles are directly sampled from the petrol flame for detailed analysis of particle size distribution, structure, and shape. At the probe tip, a transmission electron microscope (TEM) grid is stored for the soot collection via thermophoresis, which is imaged and post-processed for statistical analysis. Simultaneously, the flame development was recorded using two high-speed cameras to evidence the direct exposure of the sampling grids to the soot-laden diffusion flames and pool fires.
Technical Paper

Experimental Investigation of Injection Strategies to Improve Intelligent Charge Compression Ignition (ICCI) Combustion with Methanol and Biodiesel Direct Injection

2020-09-15
2020-01-2072
Applications of methanol and biodiesel in internal combustion engines have raised widespread concerns, but there is still huge scope for improvement in efficiency and emissions. The brand-new combustion mode, named as Intelligent Charge Compression Ignition (ICCI) combustion, was proposed with methanol-biodiesel dual fuel direct injection. In this paper, effects of injection parameters such as two-stage split-injections, injection timings, injection pressure and intake pressure on engine combustion and emissions were investigated at IMEP = 8, 10, and 12 bar. Results show that the indicated thermal efficiency up to 53.5% and the NOx emissions approaching to EURO VI standard can be obtained in ICCI combustion mode.
Technical Paper

Numerical Investigation of the Effects of Port Water Injection Timing on Performance and Emissions in a Gasoline Direct Injection Engine

2020-04-14
2020-01-0287
Port water injection is considered as a promising strategy to further improve the combustion performance of internal combustion engines for its benefit in knock resistance by reducing the cylinder temperature. A thorough investigation of the port water injection technique is required to fully understand its effects on the engine combustion process. This study explores the potential of the port water injection technique in improving the performance of a turbo charged Gasoline Direct Injection engine. A 3D computational fluid dynamics model is applied to simulate the in-cylinder mixing and combustion for this engine both with and without water injection. Different water injection timings are investigated and it is found that the injection timing greatly effects the mass of water which enters the combustion chamber, both in liquid and vapor form.
Technical Paper

Internal Model Control during Mode Transition Subject to Time Delay for Hybrid Electric Vehicles

2020-04-14
2020-01-0961
With the rapid development of series-parallel hybrid electric vehicles (SPHEVs), mode transition from pure electrical drive to hybrid drive has attracted considerable attention. The presence of time delay due to response capacity of actuators and signal transmission of communication may cause decrease of speed tracking accuracy, even instable dynamics. Consequently, drivability of the SPHEV is unacceptable, and durability of the components is reduced. So far, plenty of control strategies have been proposed for mode transition, however, no previous research has been reported to deal with the time delay during mode transition. In this paper, a dynamic model with time delay of hybrid electric system is established. Next, a mode transition time-delay controller is proposed based on a two degree of freedom internal model controller (2-DOF-IMC).
Technical Paper

Characteristics of Combustion and Emissions in a DI Engine Fueled with Biodiesel Blends from Soybean Oil

2008-06-23
2008-01-1832
Combustion and emission characteristics of diesel and biodiesel blends (soybean methyl ester) were studied in a single-cylinder Direct Injection (DI) engine at different loads and a constant speed. The results show that NOx emission and fuel consumption are increased with increasing biodiesel percentage. Reduction of smoke opacity is significant at higher loads with a higher biodiesel ratio. Compared with the baseline diesel fuel, B20 (20% biodiesel) has a slight increase of NOx emission and similar fuel consumption. Smoke emission of B20 is close to that of diesel fuel. Results of combustion analysis indicate that start of combustion (SOC) for biodiesel blends is earlier than that for diesel. Higher biodiesel percentage results in earlier SOC. Earlier SOC for biodiesel blends is due to advanced injection timing from higher density and bulk modulus and lower ignition delay from higher cetane number.
Technical Paper

Characteristics of Output Performances and Emissions of Diesel Engine Employed Common Rail Fueled with Biodiesel Blends from Wasted Cooking Oil

2008-06-23
2008-01-1833
In this paper, the characteristics of performance and emissions of diesel and biodiesel blends are studied in a four-cylinder DI engine employing common rail injection system. The results show that engine output power is further reduced and brake specific fuel consumption (BSFC) increased with the increase of the blend concentration. B100 provides average reduction by 8.6% in power and increase by 11% in BSFC. With respect to the emissions, although NOx emissions were increased with increasing the blend concentration, the increase depends on the load. Filter smoke number is reduced with increasing the blend concentration. At the same time, NO, NO2 and other specific emissions are also investigated. In addition, difference of performance and emission between standard parameters of ECU and modified parameters of ECU is investigated for B10 and B20 based on same output power. The results show that NOx emission and FSN are still lower than baseline diesel.
Technical Paper

Characteristics of Particulates and Exhaust Gases Emissions of DI Diesel Engine Employing Common Rail Fuel System Fueled with Bio-diesel Blends

2008-06-23
2008-01-1834
In this paper, characteristics of gas emission and particle size distribution are investigated in a common rail diesel engine fueled with biodiesel blends. Gas emission and particle size distribution are measured by AVL FTIR - SESAM and SMPS respectively. The results show that although biodiesel blends would result in higher NOx emissions, characteristics of NOx emissions were also dependent on the engine load for waste cooking oil methyl ester. Higher blend concentration results in higher NO2 emission after two diesel oxidation catalyst s (DOC). A higher blend concentration leads to lower CO and SO2 emissions. No significant difference of Alkene emission is found among biodiesel blends. The particle size distributions of diesel exhaust aerosol consist of a nucleation mode (NM) with a peak below 50N• m and an accumulation mode with a peak above 50N • m. B100 will result in lower particulates with the absence of NM.
Technical Paper

Permanent-Magnet DC Motor Actuators Application in Automotive Energy-Regenerative Active Suspensions

2009-04-20
2009-01-0227
An energy-regenerative vehicle suspension is proposed. Permanent-magnet direct-current motors are utilized as the active actuators in automotive suspension. The significant characteristic of the suspension is that vibration energy from the road excitation can be regenerated and transformed into electric energy while good suspension performance can be maintained. The modeling of electrical suspension system has been completed and simulated in Matlab/Simulink. The motor actuator working as a generator is proved to maintain the performance of vibration control and energy-regeneration. The prototype of motor actuator is designed and made. The vibration absorption and regeneration performances are verified by full-vehicle experiments.
Technical Paper

Combustion and Emissions of Ethanol Fuel (E100) in a Small SI Engine

2003-10-27
2003-01-3262
An air-cooled, four-stroke, 125 cc electronic gasoline fuel injection SI engine for motorcycles is altered to burn ethanol fuel. The effects of nozzle orifice size, fuel injection duration, spark timing and the excess air/ fuel ratio on engine power output, fuel and energy consumptions and engine exhaust emission levels are studied on an engine test bed. The results show that the maximum engine power output is increased by 5.4% and the maximum torque output is increased by 1.9% with the ethanol fuel in comparison with the baseline. At full load and 7000 r/min, HC emission is decreased by 38% and CO emission is decreased 46% on average over the whole engine speed range. However, NOx levels are increased to meet the maximum power output. The experiments of the spark timing show that the levels of HC and NOx emission are decreased markedly by the delay of spark timing.
Technical Paper

Distortion Mapping Correction of In-Cylinder Flow Field Measurements through Optical Liner Using Gaussian Optics Model

2017-03-28
2017-01-0615
Combustion efficiency of internal combustion engine is closely influenced by the air flow pattern in the engine cylinder. Some researchers use high-speed particle image velocimetry to visualize and measure the temporally and spatially resolved in-cylinder velocity flow fields in the optically assessable engine. However, the transparent cylindrical liner makes it difficult to accurately determine the particle displacements inside the cylinder due to the optically distorted path of scattering light from seeding particles through the curved liner. To correct for the distortion-induced error in the seeding particle positions through the optical liner, the distortion mapping function is modeled using the Gaussian optics theory. Two artificial flow patterns with 5 by 5 vectors were made to illustrate the mapping correction. Distortion-induced error of velocity vectors was precisely mapped in six different planes inside the cylinder.
Technical Paper

Lateral State Estimation for Lane Keeping Control of Electric Vehicles Considering Sensor Sampling Mismatch Issue

2016-09-14
2016-01-1900
Vehicle lateral states such as lateral distance at a preview point and heading angle are indispensable for lane keeping control systems, and such states are normally estimated by fusing signals from an onboard vision system and inertial sensors. However, the sampling rates and measurement delays are different between the two kinds of sensing devices. Most of the conventional methods simply neglect measurement delay and reduce sampling rate of the estimator to adapt to the slow sensors/devices. However, the estimation accuracy is deteriorated, especially considering the delay of visual signals may not be constant. In case of electric vehicles, the actuators for steering and traction are motors that have high control frequency. Therefore, the frequency of vehicle state feedback may not match the control frequency if the estimator is infrequently updated. In this paper, a multi-rate estimation algorithm based on Kalman filter is proposed to provide lateral states with high frequency.
Technical Paper

Study on the Optimal Control Strategy of Transient Process for Diesel Engine with Sequential Turbocharging System

2016-10-17
2016-01-2157
Three-phase sequential turbocharging system with two unequal-size turbochargers is developed to improve fuel economy performance and reduce emission of the automotive diesel engine, which satisfies wide range of intake flow demand. However, it results in complicated transient control strategies under frequently changing operating conditions. The present work aims to optimize the control scheme of boost system and fuel injection and evaluate their contributions to the improvement of transient performance. A mean value model for diesel engine was built up in SIMULINK environment and verified by experiment for transient study. Then a mathematical model of optimization issue was established. Strategies of control valves and fuel injection for typical acceleration and loading processes are obtained by coupled calculating of the simulation model and optimization algorithm.
Technical Paper

Measurement of Temperature and Soot (KL) Distributions in Spray Flames of Diesel-Butanol Blends by Two-Color Method Using High-Speed RGB Video Camera

2016-10-17
2016-01-2190
Taking advantages of high speed RGB video cameras, the two-color method can be implemented with a relatively simple setup to obtain the temporal development of the two dimensional temperature and soot (KL) distributions in a reacting diesel jet. However, several issues such as the selection of the two wavelengths, the role of bandpass filters, and the proper optical settings, etc. should be known to obtain a reliable measurement. This paper, at first, discusses about the uncertainties in the measurement of temperature and KL distributions in the diesel flame by the two-color method using the high speed RGB video camera. Since n-butanol, as an alternative renewable fuel, has the potential application in diesel engines, the characteristic of spray combustion of diesel-butanol blends under the diesel-like ambient conditions in a pre-burning constant-volume combustion chamber is studied.
X