Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Development and Demonstration of LNT+SCR System for Passenger Car Diesel Applications

2014-04-01
2014-01-1537
The regulations for mobile applications will become stricter in Euro 6 and further emission levels and require the use of active aftertreatment methods for NOX and particulate matter. SCR and LNT have been both used commercially for mobile NOX removal. An alternative system is based on the combination of these two technologies. Developments of catalysts and whole systems as well as final vehicle demonstrations are discussed in this study. The small and full-size catalyst development experiments resulted in PtRh/LNT with optimized noble metal loadings and Cu-SCR catalyst having a high durability and ammonia adsorption capacity. For this study, an aftertreatment system consisting of LNT plus exhaust bypass, passive SCR and engine independent reductant supply by on-board exhaust fuel reforming was developed and investigated. The concept definition considers NOX conversion, CO2 drawback and system complexity.
Journal Article

Impact of a Diesel High Pressure Common Rail Fuel System and Onboard Vehicle Storage on B20 Biodiesel Blend Stability

2016-04-05
2016-01-0885
Adoption of high-pressure common-rail (HPCR) fuel systems, which subject diesel fuels to higher temperatures and pressures, has brought into question the veracity of ASTM International specifications for biodiesel and biodiesel blend oxidation stability, as well as the lack of any stability parameter for diesel fuel. A controlled experiment was developed to investigate the impact of a light-duty diesel HPCR fuel system on the stability of 20% biodiesel (B20) blends under conditions of intermittent use and long-term storage in a relatively hot and dry climate. B20 samples with Rancimat induction periods (IPs) near the current 6.0-hour minimum specification (6.5 hr) and roughly double the ASTM specification (13.5 hr) were prepared from a conventional diesel and a highly unsaturated biodiesel. Four 2011 model year Volkswagen Passats equipped with HPCR fuel injection systems were utilized: one on B0, two on B20-6.5 hr, and one on B20-13.5 hr.
Journal Article

In-Cylinder LIF Imaging, IR-Absorption Point Measurements, and a CFD Simulation to Evaluate Mixture Formation in a CNG-Fueled Engine

2018-04-03
2018-01-0633
Two optical techniques were developed and combined with a CFD simulation to obtain spatio-temporally resolved information on air/fuel mixing in the cylinder of a methane-fueled, fired, optically accessible engine. Laser-induced fluorescence (LIF) of anisole (methoxybenzene), vaporized in trace amounts into the gaseous fuel upstream of the injector, was captured by a two-camera system, providing one instantaneous image of the air/fuel ratio per cycle. Broadband infrared (IR) absorption by the methane fuel itself was measured in a small probe volume via a spark-plug integrated sensor, yielding time-resolved quasi-point information at kHz-rates. The simulation was based on the Reynolds-averaged Navier-Stokes (RANS) approach with the two-equation k-epsilon turbulence model in a finite volume discretization scheme and included the port-fuel injection event. Commercial CFD software was used to perform engine simulations close to the experimental conditions.
Journal Article

Improved Energy Management Using Engine Compartment Encapsulation and Grille Shutter Control

2012-04-16
2012-01-1203
A vehicle thermal management system is required to increase the operating efficiency of components, to transfer the heat efficiently and to reduce the energy required for the vehicle. Vehicle thermal management technologies, such as engine compartment encapsulation together with grille shutter control, enable energy efficiency improvements through utilizing waste heat in the engine compartment for heating powertrain components as well as cabin heating and reducing the aerodynamic drag . In this work, a significant effort is put on recovering waste heat from the engine compartment to provide additional efficiency to the components using a motor compartment insulation technique and grille shutter. The tests are accelerated and the cost is reduced using a co-simulation tool based on high resolution, complex thermal and kinematics models. The results are validated with experimental values measured in a thermal wind tunnel, which provided satisfactory accuracy.
Journal Article

Injector Fouling and Its Impact on Engine Emissions and Spray Characteristics in Gasoline Direct Injection Engines

2017-03-28
2017-01-0808
In Gasoline Direct Injection engines, direct exposure of the injector to the flame can cause combustion products to accumulate on the nozzle, which can result in increased particulate emissions. This research observes the impact of injector fouling on particulate emissions and the associated injector spray pattern and shows how both can be reversed by utilising fuel detergency. For this purpose multi-hole injectors were deliberately fouled in a four-cylinder test engine with two different base fuels. During a four hour injector fouling cycle particulate numbers (PN) increased by up to two orders of magnitude. The drift could be reversed by switching to a fuel blend that contained a detergent additive. In addition, it was possible to completely avoid any PN increase, when the detergent containing fuel was used from the beginning of the test. Microscopy showed that increased injector fouling coincided with increased particulate emissions.
Technical Paper

Exhaust gas fuel reforming for IC Engines using diesel type fuels

2007-07-23
2007-01-2044
Control of NOx and Particulate Matter (PM) emissions from diesel engines remains a significant challenge. One approach to reduce both emissions simultaneously without fuel economy penalty is the reformed exhaust gas recirculation (REGR) technique, where part of the fuel is catalytically reacted with hot engine exhaust gas to produce a hydrogen-rich combustible gas that is then fed to the engine. On the contrary to fuel cell technology where the reforming requirements are to produce a reformate with maximized H2 concentration and minimized (virtually zero) CO concentration, the key requirement of the application of the exhaust gas fuel reforming technique in engines is the efficient on-demand generation of a reformate with only a relatively low concentration of hydrogen (typically up to 20%).
Technical Paper

Experimental and Numerical Simulation of the Flow Around the Brake Disk of a Scaled-Down VW Phaeton Model

2007-10-07
2007-01-3949
In this paper, the experimental and numerical simulation of the flow field in the simplified front wheel arch of a scaled-down VW Phaeton half-model (scale 1:2,5) is presented. For wind tunnel experiments a realistic, rotating wheel model with plexiglass treads (PMMA) was designed. The construction allowed for detailed measurements of the flow field directly at the brake disk by means of the stereoscopic Particle Image Velocimetry (PIV) technique. The formation of the flow structures and the resulting three-dimensional boundary layers on the brake disk are analyzed. Furthermore, the oncoming air flow towards the brake disk and the flow field near the wheel rim openings were investigated. The experimental data is compared with results of Computational Fluid Dynamics (CFD) simulations using the Lattice-Boltzmann based solver Powerflow. The validation shows the potential and the limitations of the numerical approach and indicates areas of further improvement.
Technical Paper

Catalytic NOx Reduction in Net Oxidizing Exhaust Gas

1990-02-01
900496
Several different possibilities will be described and discussed on the processes of reducing NOx in lean-burn gasoline and diesel engines. In-company studies were conducted on zeolitic catalysts. With lean-burn spark-ignition engines, hydrocarbons in the exhaust gas act as a reducing agent. In stationary conditions at λ = 1.2, NOx conversion rates of approx. 45 % were achieved. With diesel engines, the only promising variant is SCR technology using urea as a reducing agent. The remaining problems are still the low space velocity and the narrow temperature window of the catalyst. The production of reaction products and secondary reactions of urea with other components in the diesel exhaust gas are still unclarified.
Technical Paper

Particulate and Hydrocarbon Emissions from a Spray Guided Direct Injection Spark Ignition Engine with Oxygenate Fuel Blends

2007-04-16
2007-01-0472
The blending of oxygenated compounds with gasoline is projected to increase because oxygenate fuels can be produced renewably, and because their high octane rating allows them to be used in substitution of the aromatic fraction in gasoline. Blending oxygenates with gasoline changes the fuels' properties and can have a profound affect on the distillation curve, both of which are known to affect engine-out emissions. In this work, the effect of blending methanol and ethanol with gasoline on unburned hydrocarbon and particulate emissions is experimentally determined in a spray guided direct injection engine. Particulate number concentration and size distribution were measured using a Cambustion DMS500. These data are presented for different air fuel ratios, loads, ignition timings and injection timings. In addition, the ASTM D86 distillation curve was modeled using the binary activity coefficients method for the fuel blends used in the experiments.
Technical Paper

A PDF-Based Model for Full Cycle Simulation of Direct Injected Engines

2008-06-23
2008-01-1606
In one-dimensional engine simulation programs the simulation of engine performance is mostly done by parameter fitting in order to match simulations with experimental data. The extensive fitting procedure is especially needed for emissions formation - CO, HC, NO, soot - simulations. An alternative to this approach is, to calculate the emissions based on detailed kinetic models. This however demands that the in-cylinder combustion-flow interaction can be modeled accurately, and that the CPU time needed for the model is still acceptable. PDF based stochastic reactor models offer one possible solution. They usually introduce only one (time dependent) parameter - the mixing time - to model the influence of flow on the chemistry. They offer the prediction of the heat release, together with all emission formation, if the optimum mixing time is given.
Technical Paper

Impact of Diesel Fuel Composition on Soot Oxidation Characteristics

2009-04-20
2009-01-0286
The regeneration of a Diesel Particulate Filter (DPF) is dependent on both the amount and type of soot present on the filter. The objective of this work is to understand how the fuel can affect this ease with which soot can be oxidized. This soot was produced in a two-cylinder four-stroke direct-injection diesel engine, operated with a matrix of fuels with varying aromatic and sulphur level. Their oxidation behaviour in different environments was determined by Temperature Programmed Oxidation in TGA and a six-flow reactor. Transmission electron microscopy was used to examine the soot morphology. Oxidation with only O2 shows oxidation temperatures strongly dependent on the fuel type. Soot oxidation in the presence of NO and a Pt-catalyst results in a lower oxidation temperature. SO2 has an inhibiting effect leading to higher soot oxidation temperature.
Technical Paper

Application of Detached-Eddy Simulation for Automotive Aerodynamics Development

2009-04-20
2009-01-0333
This paper presents a complete methodology for performing finite-volume-based detached-eddy simulation for the prediction of aerodynamic forces and detailed flow structures of passenger vehicles developed using the open-source CFD toolbox OpenFOAM®. The main components of the methodology consist of an automatic mesh generator, a setup and initialisation utility, a DES flow solver and analysis and post-processing routines. Validation of the predictions is done on the basis of detailed comparisons to experimental wind-tunnel data. Results for lift and drag are found to compare favourably to the experiments, with some moderate discrepancies in predicted rear lift. Point surface-pressure measurements, oil-streak images and maps of total pressure in the flow field demonstrate the approach's capabilities to predict the fine detail of complex flow regimes found in automotive aerodynamics.
Technical Paper

Diesel Engine Performance and Emissions when First Generation Meets Next Generation Biodiesel

2009-06-15
2009-01-1935
Limits on the total future potential of biodiesel fuel due to the availability of raw materials mean that ambitious 20% fuel replacement targets will need to be met by the use of both first and next generation biodiesel fuels. The use of higher percentage biodiesel blends requires engine recalibration, as it affects engine performance, combustion patterns and emissions. Previous work has shown that the combustion of 50:50 blends of biodiesel fuels (first generation RME and next generation synthetic fuel) can give diesel fuel-like performance (i.e. in-cylinder pressure, fuel injection and heat release patterns). This means engine recalibration can be avoided, plus a reduction in all the regulated emissions. Using a 30% biodiesel blend (with different first and next generation proportions) mixed with Diesel may be a more realistic future fuel.
Technical Paper

Benefits of GTL Fuel in Vehicles Equipped with Diesel Particulate Filters

2009-06-15
2009-01-1934
Synthetic fuels are expected to play an important role for future mobility, because they can be introduced seamlessly alongside conventional fuels without the need for new infrastructure. Thus, understanding the interaction of GTL fuels with modern engines, and aftertreatment systems, is important. The current study investigates potential benefits of GTL fuel in respect of diesel particulate filters (DPF). Experiments were conducted on a Euro 4 TDI engine, comparing the DPF response to two different fuels, normal diesel and GTL fuel. The investigation focused on the accumulation and regeneration behavior of the DPF. Results indicated that GTL fuel reduced particulate formation to such an extent that the regeneration cycle was significantly elongated, by ∼70% compared with conventional diesel. Thus, the engine could operate for this increased time before the DPF reached maximum load and regeneration was needed.
Technical Paper

Simulation Based Analysis of Test Results

2010-04-12
2010-01-1013
The use of a newly developed approach results in a highly accurate three dimensional analysis of the occupant movement. The central point of the new method is the calculation of precise body-trajectories by fitting standard sensor-measurements to video analysis data. With the new method the accuracy of the calculated trajectories is better than 5 to 10 millimeters. These body trajectories then form the basis for a new multi-body based numerical method, which allows the three dimensional reconstruction of the dummy kinematics. In addition, forces and moments acting on every single body are determined. In principle, the body movement is reconstructed by prescribing external forces and moments to every single body requiring that it follows the measured trajectory. The newly developed approach provides additional accurate information for the development engineers. For example the motion of dummy body parts not tracked by video analysis can be determined.
Technical Paper

Combustion Chamber Deposit Flaking and Startability Problems in Three Different Engines

2003-10-27
2003-01-3187
A field problem associated with flakes of combustion chamber deposits getting trapped on the exhaust valve seat and causing starting problems has appeared recently. Four fuels have been tested in three different car models using a deposit flaking road test procedure. For each piston top, flaking can be characterised using T1 and T2, the mean deposit thickness on the piston crown before and after flaking respectively. A new measure of deposit flaking, ΔT, the mean of (T1-T2) averaged over all cylinders has been introduced and its variance established for the standard test using one of the models. ΔT quantifies the actual amount of deposits that have flaked and is likely to be a more relevant indicator of flaking for startability problems than Rw, the mean of the ratio of T2 to T1, used in previous work. Deposit flaking is directly related to an increase in valve leakage rates and startability problems.
Technical Paper

New ways of fluid flow control in automobiles: Experience with exhaust gas aftertreatmetn control

2000-06-12
2000-05-0299
Flow control by fluidic devices - without moving parts - offers advantages of reliability and low cost. As an example of their automobile application based on authors'' long-time experience the paper describes a fluidic valve for switching exhaust gas flow in a NOx absorber into a by-pass during regeneration phase. The unique feature here is the fluidic valve being of monostable and of axisymmetric design, integrated into the absorber body. After development in aerodynamic laboratory, the final design was tested on engine test stand and finally in a car. This proved that the performance under high temperature and pulsation existing in exhaust systems is reliable and promising. Fluidic valves require, however, close matching with aerodynamic load. To optimize the exhaust system layout for the whole load-speed range and reaching minimum counter- pressure, both the components of exhaust system and control strategy have to be properly adopted.
Technical Paper

A Study of the Thermochemical Conditions in the Exhaust Manifold Using Secondary Air in a 2.0 L Engine

2002-05-06
2002-01-1676
The California LEV1 II program will be introduced in the year 2003 and requires a further reduction of the exhaust emissions of passenger cars. The cold start emissions represent the main part of the total emissions of the FTP2-Cycle. Cold start emissions can be efficiently reduced by injecting secondary air (SA) in the exhaust port making compliance with the most stringent standards possible. The thermochemical conditions (mixing rate and temperature of secondary air and exhaust gas, exhaust gas composition, etc) prevailing in the exhaust system are described in this paper. This provides knowledge of the conditions for auto ignition of the mixture within the exhaust manifold. The thus established exothermal reaction (exhaust gas post-combustion) results in a shorter time to light-off temperature of the catalyst. The mechanisms of this combustion are studied at different engine idle conditions.
Technical Paper

Effect of Diesel Properties on Emissions and Fuel Consumption from Euro 4, 5 and 6 European Passenger Cars

2016-10-17
2016-01-2246
Certain diesel fuel specification properties are considered to be environmental parameters according to the European Fuels Quality Directive (FQD, 2009/EC/30) and previous regulations. These limits included in the EN 590 specification were derived from the European Programme on Emissions, Fuels and Engine Technologies (EPEFE) which was carried out in the 1990’s on diesel vehicles meeting Euro 2 emissions standards. These limits could potentially constrain FAME blending levels higher than 7% v/v. In addition, no significant work has been conducted since to investigate whether relaxing these limits would give rise to performance or emissions debits or fuel consumption benefits in more modern vehicles. The objective of this test programme was to evaluate the impact of specific diesel properties on emissions and fuel consumption in Euro 4, Euro 5 and Euro 6 light-duty diesel vehicle technologies.
Technical Paper

Effects of Fuel Properties Associated with In-Cylinder Behavior on Particulate Number from a Direct Injection Gasoline Engine

2017-03-28
2017-01-1002
The purpose of this work was to gain a fundamental understanding of which fuel property parameters are responsible for particulate emission characteristics, associated with key intermediate behavior in the engine cylinder such as the fuel film and insufficient mixing. Accordingly, engine tests were carried out using various fuels having different volatility and chemical compositions under different coolant temperature conditions. In addition, a fundamental spray and film visualization analysis was also conducted using a constant volume vessel, assuming the engine test conditions. As for the physical effects, the test results showed that a low volatility fuel displayed high particulate number (PN) emissions when the injection timing was advanced. The fundamental test clearly showed that the amount of fuel film on the impingement plate increased under such operating conditions with a low volatility fuel.
X