Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

A Process to Predict Friction in an Automotive Valve Train

1990-09-01
901728
A study was conducted using a combination of elastohydrodynamic lubrication (EHD) theory, classical boundary and hydrodynamic lubrication principles, and empirical relationships to characterize the mechanical losses from gasoline engine valve trains. The result was a comprehensive analytical methodology that serves as an excellent design tool when determining a first approximation of valve train friction.
Technical Paper

A Non-Intrusive Method of Measuring PCV Blowby Constituents

1994-10-01
941947
A technique is presented that has been successfully demonstrated to non-intrusively and quickly sample gases typically found in PCV systems. Color Detection Tubes (CDTs) were used with a simple sampling arrangement to monitor CO2, NOx, O2, and H2O(g) at the closure line, crankcase, and PCV line. Measurements were accurate and could be made instantaneously. Short Path Thermal Desorbtion Tubes (SPTDTs) were used at the same engine locations for the characterization of fuel- and oil-derived hydrocarbon (HC) fractions and required only 50 cc samples. High engine loads caused pushover of blowby vapors as indicated by increased concentrations of CO2, NOx, H2O(g), and fuel HCs in the engines' fresh air inlets during WOT operation. Peak concentrations of blowby vapors were measured in the crankcase under no load and part throttle conditions. Oxygen concentrations always opposed the trends of CO2, NOx, and H2O(g).
X