Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

Development of a Natural Gas Engine with Diesel Engine-like Efficiency Using Computational Fluid Dynamics

2019-04-02
2019-01-0225
Present day natural gas engines have a significant efficiency disadvantage but benefit with low carbon-dioxide emissions and cheap three-way catalysis aftertreatment. The aim of this work is to improve the efficiency of a natural gas engine on par with a diesel engine. A Cummins-Westport ISX12-G (diesel) engine is used for the study. A baseline model is validated in three-dimensional Computational Fluid Dynamics (CFD). The challenge of this project is adapting the diesel engine for the natural gas fuel, so that the increased squish area of the diesel engine piston can be used to accomplish faster natural gas burn rates. A further increase efficiency is achieved by switching to D-EGR technology. D-EGR is a concept where one or more cylinders are run with excess fueling and its exhaust stream, containing H2 and CO, is cooled and fed into the intake stream. With D-EGR although there is an in-cylinder presence of a reactive H2-CO reformate, there is also higher levels of dilution.
Technical Paper

Evaluation of Diesel Spray with Non-Circular Nozzle - Part I: Inert Spray

2019-01-15
2019-01-0065
Numerous studies have characterized the impact of high injection pressure and small nozzle holes on spray quality and the subsequent impact on combustion. Higher injection pressure or smaller nozzle diameter usually reduce soot emissions owing to better atomization quality and fuel-air mixing enhancement. The influence of nozzle geometry on spray and combustion of diesel continues to be a topic of great research interest. An alternate approach impacting spray quality is investigated in this paper, specifically the impact of non-circular nozzles. The concept was explored experimentally in an optically accessible constant-volume combustion chamber (CVCC). Non-reacting spray evaluations were conducted at various ambient densities (14.8, 22.8, 30 kg/m3) under inert gas of Nitrogen (N2) while injection pressure was kept at 100 MPa. Shadowgraph imaging was used to obtain macroscopic spray characteristics such as spray structure, spray penetration, and the spray cone angle.
Technical Paper

Effect of Micro-Hole Nozzle on Diesel Spray and Combustion

2018-04-03
2018-01-0301
The influence of nozzle geometry on spray and combustion of diesel continues to be a topic of great research interest. One area of promise, injector nozzles with micro-holes (i.e. down to 30 μm), still need further investigation. Reduction of nozzle orifice diameter and increased fuel injection pressure typically promotes air entrainment near-nozzle during start of injection. This leads to better premixing and consequently leaner combustion, hence lowering the formation of soot. Advances in numerical simulation have made it possible to study the effect of different nozzle diameters on the spray and combustion in great detail. In this study, a baseline model was developed for investigating the spray and combustion of diesel fuel at the Spray A condition (nozzle diameter of 90 μm) from the Engine Combustion Network (ECN) community.
Technical Paper

Efficiency and Emissions Characteristics of Partially Premixed Dual-Fuel Combustion by Co-Direct Injection of NG and Diesel Fuel (DI2) - Part 2

2017-03-28
2017-01-0766
The CO2 advantage coupled with the low NOX and PM potential of natural gas (NG) makes it well-suited for meeting future greenhouse gas (GHG) and NOX regulations for on-road medium and heavy-duty engines. However, because NG is mostly methane, reduced combustion efficiency associated with traditional NG fueling strategies can result in significant levels of methane emissions which offset the CO2 advantage due to reduced efficiency and the high global warming potential of methane. To address this issue, the unique co-direct injection capability of the Westport HPDI fuel system was leveraged to obtain a partially-premixed fuel charge by injecting NG during the compression stroke followed by diesel injection for ignition timing control. This combustion strategy, referred to as DI2, was found to improve thermal and combustion efficiencies over fumigated dual-fuel combustion modes.
Journal Article

A Study Isolating the Effect of Bore-to-Stroke Ratio on Gasoline Engine Combustion Chamber Development

2016-10-17
2016-01-2177
A unique single cylinder engine was used to assess engine performance and combustion characteristics at three different strokes, with all other variables held constant. The engine utilized a production four-valve, pentroof cylinder head with an 86mm bore. The stock piston was used, and a variable deck height design allowed three crankshafts with strokes of 86, 98, and 115mm to be tested. The compression ratio was also held constant. The engine was run with a controlled boost-to-backpressure ratio to simulate turbocharged operation, and the valve events were optimized for each operating condition using intake and exhaust cam phasers. EGR rates were swept from zero to twenty percent under low and high speed conditions, at MBT and maximum retard ignition timings. The increased stroke engines demonstrated efficiency gains under all operating conditions, as well as measurably reduced 10-to-90 percent burn durations.
Technical Paper

Port Design for Charge Motion Improvement within the Cylinder

2016-04-05
2016-01-0600
The engine intake process governs many aspects of the flow within the cylinder. The inlet valve is the minimum area, so gas velocities at the valve are the highest velocities seen. Geometric configuration of the inlet ports and valves, and the opening schedule create organized large scale motions in the cylinder known as swirl and tumble. Good charge motion within the cylinder will produce high turbulence levels at the end of the compression stroke. As the turbulence resulting from the conversion energy of the inlet jet decays fast, the strategy is to encapsulate some of the inlet jet in the organized motions. In this work the baseline port of a 2.0 L gasoline engine was modified by inserting a tumble plate. The work was done in support of an experimental study for which a new single-cylinder research engine was set up to allow combustion system parameters to be varied in steps over an extensive range. Tumble flow was one such parameter.
Technical Paper

Dilute Combustion Assessment in Large Bore, Low Speed Engines

2017-03-28
2017-01-0580
The promising D-EGR gasoline engine results achieved in the test cell, and then in a vehicle demonstration have led to exploration of further possible applications. A study has been conducted to explore the use of D-EGR gasoline engines as a lower cost replacement for medium duty diesel engines in trucks and construction equipment. However, medium duty diesel engines have larger displacement, and tend to require high torque at lower engine speeds than their automobile counterparts. Transmission and final drive gearing can be utilized to operate the engine at higher speeds, but this penalizes life-to-overhaul. It is therefore important to ensure that D-EGR combustion system performance can be maintained with a larger cylinder bore, and with high specific output at relatively low engine speeds.
Technical Paper

Dual Fuel Combustion Study Using 3D CFD Tool

2016-04-05
2016-01-0595
The current boom in natural gas from shale formations in the United States has reduced the price of natural gas to less than the price of petroleum fuels. Thus it is attractive to convert high horsepower diesel engines that use large quantities of fuel to dual fuel operation where a portion of the diesel fuel is replaced by natural gas. The substitution is limited by emissions of unburned natural gas and severe combustion phenomena such as auto-ignition or knock of the mixture and high rates of pressure rise during the ignition and early phase combustion of the diesel and natural gas-air mixture. In this work, the combustion process for dual fuel combustion was investigated using 3D CFD. The combustion process was modeled using detailed chemistry and a simulation domain sensitivity study was conducted to investigate the combustion to CFD geometry assumptions. A baseline model capturing the onset of knock was validated against experimental data from a heavy-duty dual-fuel engine.
Technical Paper

Efficiency and Emissions Characteristics of Partially Premixed Dual-Fuel Combustion by Co-Direct Injection of NG and Diesel Fuel (DI2)

2016-04-05
2016-01-0779
For the US market, an abundant supply of natural gas (NG) coupled with recent green-house gas (GHG) regulations have spurred renewed interest in dual-fuel combustion regimes. This paper explores the potential of co-direct injection to improve the efficiency and reduce the methane emissions versus equivalent fumigated dual-fuel combustion systems. Using the Westport HPDI engine as the experimental test platform, the paper reports the results obtained using both diffusion controlled (HPDI) combustion strategy as well as a partially-premixed combustion strategy (DI2). The DI2 combustion strategy shows good promise, as it has been found to improve the engine efficiency by over two brake thermal efficiency (BTE) points (% fuel energy) compared to the diffusion controlled combustion strategy (HPDI) while at the same time reducing the engine-out methane emissions by 75% compared to an equivalent fumigated dual-fuel combustion system.
Journal Article

FSI - MRF Coupling Approach For Faster Turbocharger 3D Simulation

2019-01-15
2019-01-0007
Fluid-Structure Interaction (FSI) simulation approach can be used to simulate a turbocharger. However, this predictive 3D simulation encounters the challenge of a long computational time. The impeller speed can be above 100,000 rpm, and generally a CFD solver limits the maximum movement of the impeller surface per time step. The maximum movement must be a fraction (~0.3) of the cell length, thus the time step will be very small. A Multiple Reference Frame (MRF) approach can reduce computational time by eliminating the need to regenerate the mesh at each time-step to accommodate the moving geometry. A static local reference zone encompassing the impeller is created and the impact of the impeller movement is modeled via a momentum source. However, the MRF approach is not a predictive simulation because the impeller speed must be given by the User. A new simulation approach was introduced that coupled the FSI and MRF approach.
X