Refine Your Search

Topic

Author

Search Results

Technical Paper

Impact of Lubricant Oil on Regulated Emissions of a Light-Duty Mercedes-Benz OM611 CIDI-Engine

2001-05-07
2001-01-1901
The Partnership for a New Generation Vehicle (PNGV) has identified the compression-ignition, direct-injection (CIDI) engine as a promising technology in meeting the PNGV goal of 80 miles per gallon for a prototype mid-size sedan by 2004. Challenges remain in reducing the emission levels of the CIDI-engine to meet future emission standards. The objective of this project was to perform an initial screening of crank case lubricant contribution to regulated engine-out emissions, particularly when low particulate forming diesel fuel formulations are used. The test engine was the Mercedes-Benz OM611, the test oils were a mineral SAE 5W30, a synthetic (PAO based) SAE 5W30, and a synthetic (PAO based) SAE 15W50, and the test fuels were a California-like certification fuel and an alternative oxygenated diesel fuel.
Technical Paper

Vektron® 6913 Gasoline Additive NOX Evaluation Fleet Test Program

2001-05-07
2001-01-1997
A 28-vehicle fleet test was executed to verify and quantify the NOX emissions reductions achieved through the use of Infineum's Vektron 6913 gasoline additive. The fleet composition and experimental design were finalized in collaborative discussions with US Environmental Protection Agency (EPA) Office of Transportation & Air Quality (OTAQ) and consultation / advice from several major US automotive manufacturers. The test was conducted over a period of five months at Southwest Research Institute. Statistical analysis of the emissions data indicated a 10% average fleet reduction in NOX emissions without any negative impact on other criteria pollutants (CO, HC) or fuel economy.
Technical Paper

The Challenges of Developing an Energy, Emissions, and Fuel Economy Test Procedure for Heavy-Duty Hybrid Electric Transit Vehicles

1995-11-01
952610
Over twenty prototype hybrid buses and other commercial vehicles are currently being completed and deployed. These vehicles are primarily “series” hybrid vehicles which use electric motors for primary traction while internal combustion engines, or high-speed turbine engines connected to generators, supply some portion of the electric propulsion and battery recharge energy. Hybrid-electric vehicles have an electric energy storage system on board that influences the operation of the heat engine. The storage system design and level affect the vehicle emissions, electricity consumption, and fuel economy. Existing heavy-duty emissions test procedures require that the engine be tested over a transient cycle before it can be used in vehicles (over 26,000 lbs GVW). This paper describes current test procedures for assessing engine and vehicle emissions, and proposes techniques for evaluating engines used with hybrid-electric vehicle propulsion systems.
Technical Paper

CNG Compositions in Texas and the Effects of Composition on Emissions, Fuel Economy, and Driveability of NGVs

1996-10-01
962097
A survey of the CNG compositions within NGV driving range of Houston was performed. It was found that the statistics for the Texas CNGs were very similar to those from a previous national survey Based upon the present survey results, two extremes of CNG composition were chosen for a study of the effects of composition on emissions, fuel economy, and driveability. Two other CNG compositions were also included to provide for comparisons with the recently completed Auto/Oil Air Quality Improvement Research Program (AQIRP) and to extend the AQIRP database. One of the vehicles used in the AQIRP study was also used in the present investigation. Correlations were investigated for the relationships between the CNG composition and tailpipe emissions, fuel economy, and driveability.
Technical Paper

Analysis of a Hybrid Powertrain for Heavy Duty Trucks

1995-11-01
952585
Heavy duty trucks account for about 50 percent of the NOx burden in urban areas and consume about 20 percent of the national transportation fuel in the United States. There is a continuing need to reduce emissions and fuel consumption. Much of the focus of current work is on engine development as a stand-alone subsystem. While this has yielded impressive gains so far, further improvement in emissions or engine efficiency is unlikely in a cost effective manner. Consequently, an integrated approach looking at the whole powertrain is required. A computer model of the heavy duty truck system was built and evaluated. The model includes both conventional and hybrid powertrains. It uses a series of interacting sub-models for the vehicle, transmission, engine, exhaust aftertreatment and braking energy recovery/storage devices. A specified driving cycle is used to calculate the power requirements at the wheels and energy flow and inefficiencies throughout the drivetrain.
Technical Paper

Formaldehyde Emission Control Technology for Methanol-Fueled Vehicles: Catalyst Selection

1992-02-01
920092
The use of methanol as a “clean fuel” appears to be a viable approach to reduce air pollution. However, concern has been expressed about potentially high formaldehyde emissions from stoichiometrically operated light-duty vehicles. This paper presents results from an emission test program conducted for the California Air Resources Board (CARB) and the South Coast Air Quality Management District (SCAQMD) to identify and evaluate advanced catalyst technology to reduce formaldehyde emissions without compromising regulated emission control. An earlier paper presented the results of evaluating eighteen different catalyst systems on a hybrid methanol-fueled test vehicle. (1)* This paper discusses the optimization of three of these catalyst systems on four current technology methanol-fueled vehicles. Emission measurements were conducted for formaldehyde, nonmethane organic gases (NMOG), methanol, carbon monoxide, and oxides of nitrogen emissions.
Technical Paper

The Stratified Charge Glowplug Ignition (SCGI) Engine with Natural Gas Fuel

1991-09-01
911767
The objective was to demonstrate the feasibility of operating a natural gas two-stroke engine using glow plug ignition with very lean mixtures. Based on the results obtained, the term SCGI (stratified charge glow plug ignition) was coined to describe the engine. An JLO two-stroke diesel engine was converted first to a natural gas fueled spark-ignited engine for the baseline tests, and then to an SCGI engine. The SCGI engine used a gas operated valve in the cylinder head to admit the natural gas fuel, and a glow plug was used as a means to initiate the combustion. The engine was successfully run, but was found to be sensitive to various conditions such as the glow plug temperature. The engine would run very lean, to an overall equivalence ratio of 0.33, offering the potential of good fuel economy and low NOx emissions.
Technical Paper

Soak Time Effects on Car Emissions and Fuel Economy

1978-02-01
780083
Five light-duty vehicles were used to investigate HC, CO, and NOx emissions and fuel economy sensitivity to changes in the length of soak period preceding the EPA Urban Dynamometer Driving Schedule (UDDS). Emission tests were conducted following soak periods 10 minutes to 36 hours in length. Each of the first 8 minutes of the driving cycle was studied separately to observe vehicle warm-up. Several engine and fuel system temperatures were monitored during soak and run periods and example trends are illustrated. The extent to which emission rates and fuel consumption are affected by soak period length is discussed.
Technical Paper

Automatic Transmission Efficiency Characteristics and Gearbox Torque Loss Data Regression Techniques

1993-03-01
930907
This paper presents a general discussion of automatic transmission parasitic losses and efficiency characteristics. Efficiency characteristics of the three major automatic transmission components-pump, torque converter, and gearbox-and their contribution to the transmission total torque losses are examined. A data reduction method for isolating gearbox torque losses from total transmission losses is also described. The information presented is based on pump, torque converter, and transmission testing performed at SwRI for Ford Motor Company. Test data was used to perform analytical fuel economy benchmarking studies. Testing included 13 transmissions manufactured by American, European, and Japanese manufacturers for 3.0-5.8L truck applications.
Technical Paper

Application of On-Highway Emissions Technology on a Scraper Engine

1992-04-01
920923
An investigation was performed to determine the effects of applying on-highway heavy-duty diesel engine emissions reduction technology to an off-highway version of the engine. Special attention was paid to the typical constraints of fuel consumption, heat rejection, packaging and cost-effectiveness. The primary focus of the effort was NOx, reduction while hopefully not worsening other gaseous and particulate emissions. Hardware changes were limited to “bolt-on” items, thus excluding piston and combustion chamber modifications. In the final configuration, NOx was improved by 28 percent, particulates by 58 percent, CO and HC were also better and the fuel economy penalty was limited to under 4 percent. Observations are made about the effectiveness of various individual and combined strategies, and potential problems are identified.
Technical Paper

Homogeneous-Charge Compression-Ignition (HCCI) Engines

1989-09-01
892068
Homogeneous Charge Compression Ignition (HCCI) combustion can be made to occur in a four-stroke engine with smooth and even combustion under some circumstances. It offers the possibility of light load operation without throttling, thus giving fuel economy like a diesel, in the same engine allowing full load operation with homogeneous charge, thus giving a power density comparable to a gasoline engine. This paper gives results of an experimental program in which the ranges of permissible values of the operating parameters were defined for HCCI operation of a four-stroke engine. It was found that HCCI required high exhaust gas recirculation (EGR) rates (in the range of 13 to 33 percent) and high intake temperatures (greater than 370°C). Under the right conditions HCCI combustion produced fuel economy results comparable with a D.I. diesel engine (ISFC in the range 180 to 200 g/kWh).
Technical Paper

Improvement of Automobile Fuel Economy

1974-02-01
740969
A series of road, engine, chassis dynamometer, and accessory power consumption tests was conducted in order to characterize the fuel economy of 1973 standard and intermediate size vehicles. Devices and systems which appeared to offer fuel economy benefits were evaluated by means of an analytical procedure. The study was limited to hardware which could be in production by the 1980 model year. The evaluation procedure was based on urban and steady speed operation, and the effects of compliance with future emission standards were included. Combinations of individual improvements were selected and applied to the same vehicle. The evaluation procedure was repeated, and fuel economy improvements of 30 to 70% were predicted by comparison with 1973 model year vehicles.
Technical Paper

Optimization of Heavy Duty Diesel Engine Lubricant and Coolant Pumps for Parasitic Loss Reduction

2018-04-03
2018-01-0980
As fuel economy becomes increasingly important in all markets, complete engine system optimization is required to meet future standards. In many applications, it is difficult to realize the optimum coolant or lubricant pump without first evaluating different sets of engine hardware and iterating on the flow and pressure requirements. For this study, a Heavy Duty Diesel (HDD) engine was run in a dynamometer test cell with full variability of the production coolant and lubricant pumps. Two test stands were developed to allow the engine coolant and lubricant pumps to be fully mapped during engine operation. The pumps were removed from the engine and powered by electric motors with inline torque meters. Each fluid circuit was instrumented with volume flow meters and pressure measurements at multiple locations. After development of the pump stands, research efforts were focused on hardware changes to reduce coolant and lubricant flow requirements of the HDD engine.
Technical Paper

Low Heat Rejection Engines

1986-03-01
860314
The paper gives a general overview of the state-of-the-art in low heat rejection (LHR) engines. It also gives experimental results obtained at SwRI with a single-cylinder research engine using an electrically heated cylinder liner to simulate LHR operation and examine the effects of increased liner temperature. It was concluded that the improvement in fuel economy from LHR operation is negligible in naturally-aspirated (NA) engines, about 7 percent in turbocharged (TC) engines and about 15 percent in turbocompound (TCO) engines. LHR operation reduces power in NA engines only. It increases NOx emissions by around 15 percent, but reduces HC and CO emissions. LHR operation offers benefits in the reduction of noise and smoke, and in operation on low cetane fuels. Much more research is needed to overcome the practical problems before LHR engines can be put into production.
Technical Paper

Fuel Efficiency Effects of Lubricants in Military Vehicles

2010-10-25
2010-01-2180
The US Army is currently seeking to reduce fuel consumption by utilizing fuel efficient lubricants in its ground vehicle fleet. An additional desire is for a lubricant which would consist of an all-season (arctic to desert), fuel efficient, multifunctional Single Common Powertrain Lubricant (SCPL) with extended drain capabilities. To quantify the fuel efficiency impact of a SCPL type fluid in the engine and transmission, current MIL-PRF-46167D arctic engine oil was used in place of MIL-PRF-2104G 15W-40 oil and SAE J1321 Fuel Consumption In-Service testing was conducted. Additionally, synthetic SAE 75W-140 gear oil was evaluated in the axles of the vehicles in place of an SAE J2360 80W-90 oil. The test vehicles used for the study were three M1083A1 5-Ton Cargo vehicles from the Family of Medium Tactical Vehicles (FMTV).
Technical Paper

Observations from Cylinder Liner Wear Studies in Heavy Duty Diesel Engines and the Evolution towards Lower Viscosity Heavy Duty Engine Lubricants

2011-04-12
2011-01-1207
Since the invention of the internal combustion engine, the contact between piston ring and cylinder liner has been a major concern for engine builders. The quality and durability of this contact has been linked to the life of the engine, its maintenance, and its exhaust gas and blowby emissions, but also to its factional properties and therefore fuel economy. While the basic design has not changed, many factors that affect the performance of the ring/liner contact have evolved and are still evolving. This paper provides an overview of observations related to the lubrication of the ring/liner contact.
Technical Paper

Control System Development for Retrofit Automated Manual Transmissions

2009-12-13
2009-28-0001
For transmission suppliers tooled primarily for producing manual transmissions, retrofitting a manual transmission with actuators and a controller is business viable. It offers a low cost convenience for the consumer without losing fuel economy when compared to torque converter type automatics. For heavy duty truck fleets even the estimated 3% gain in fuel economy that the Automated Manual Transmission (AMT) offers over the manual transmission can result in lower operational costs. This paper provides a case study using a light duty transmission retrofitted with electric actuation for gears and the clutch. A high level description of the control algorithms and hardware is included. Clutch control is the most significant component of the AMT controller and it is addressed in detail during operations such as vehicle launch from rest, launch from coast and launch on grades.
Technical Paper

Analysis of a SuperTurbocharged Downsized Engine Using 1-D CFD Simulation

2010-04-12
2010-01-1231
The VanDyne SuperTurbocharger (SuperTurbo) is a turbocharger with an integral Continuously Variable Transmission (CVT). By changing the gear ratio of the CVT, the SuperTurbo is able to either pull power from the crankshaft to provide a supercharging function, or to function as a turbo-compounder, where energy is taken from the turbine and given to the crankshaft. The SuperTurbo's supercharger function enhances the transient response of a downsized and turbocharged engine, and the turbo-compounding function offers the opportunity to extract the available exhaust energy from the turbine rather than opening a waste gate. Using 1-D simulation, it was shown that a 2.0-liter L4 could exceed the torque curve of a 3.2L V6 using a SuperTurbo, and meet the torque curve of a 4.2-liter V8 with a SuperTurbo and a fresh-air bypass configuration. In each case, the part-load efficiency while using the SuperTurbo was better than the baseline engine.
Technical Paper

Dependence of Fuel Consumption on Engine Backpressure Generated by a DPF

2010-04-12
2010-01-0535
In recent years, Diesel Particulate Filter (DPF) systems have become the state-of-the-art technology to realize low particulate emission for light, medium or heavy-duty diesel vehicles. In addition to good filtration efficiency and thermo-mechanical robustness, the engine backpressure resulted from the DPF installation is an important parameter which directly impacts the fuel economy of the engine. The goal of this experimental test series was to determine the dependence of fuel consumption on engine backpressure resulted from a DPF installed on a heavy-duty application. The testing was executed on a MY2003 Volvo D12 heavy-duty diesel engine in an engine test cell at Southwest Research Institute (SwRI). Empty DPF cans were used with an exhaust valve to mimic the post turbo pressure levels for two different types of DPF materials at nine selected engine operating points of the European Stationary Cycle (ESC).
Technical Paper

Mild Regenerative Braking to Enhance Fuel Economy via Lowered Engine Load Due to Alternator

2008-10-12
2008-01-2560
Brake energy recovery is one of the key components in today's hybrid vehicles that allows for increased fuel economy. Typically, major engineering changes are required in the drivetrain to achieve these gains. The objective of this paper is to present a concept of capturing brake energy in a mild hybrid approach without any major modifications to the drivetrain or other vehicular systems. With fuel costs rising, the additional component cost incurred in the presented concept may be recovered quickly. In today's vehicles, alternators supply the electrical power for the engine and vehicle accessories whenever the engine is running. As vehicle electrical demands increase, this load is an ever-increasing part of the engine's output, negatively impacting fuel economy. By using a regenerative device (alternator) on the drive shaft (or any other part of the power train), electrical energy can be captured during braking.
X