Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Improving Heavy Duty Natural Gas Engine Efficiency: A Systematic Approach to Application of Dedicated EGR

2020-04-14
2020-01-0818
The worldwide trend of tightening CO2 emissions standards and desire for near zero emissions is driving development of high efficiency natural gas engines for a low CO2 replacement of traditional diesel engines. A Cummins Westport ISX12 G was previously converted to a Dedicated EGR® (D-EGR®) configuration with two out of the six cylinders acting as the EGR producing cylinders. Using a systems approach, the combustion and turbocharging systems were optimized for improved efficiency while maintaining the potential for achieving 0.02 g/bhp-hr NOX standards. A prototype variable nozzle turbocharger was selected to maintain the stock torque curve. The EGR delivery method enabled a reduction in pre-turbine pressure as the turbine was not required to be undersized to drive EGR. A high energy Dual Coil Offset (DCO®) ignition system was utilized to maintain stable combustion with increased EGR rates.
Technical Paper

Advanced 1-D Ignition and Flame Growth Modeling for Ignition and Misfire Predictions in Spark Ignition Engines

2021-04-06
2021-01-0376
Simulating high amounts of exhaust gas recirculation in spark ignited engines to predict combustion using the currently available CFD modeling approaches is a challenge and does not always give reasonable matches with experimental observations. One of the reasons for the mismatch lies with the secondary circuit treatment of the ignition coil and the resulting energy deposition or a complete lack of it thereof. An ignition modeling approach is developed in this work which predicts the energy transfer from the electrical circuit to the gases in the combustion chamber leading to flame kernel growth under high EGR and high gas flow velocity conditions. Secondary circuit sub-model includes secondary side of the coil, spark plug and spark gap. The sub-model calculates the delivered energy to the gas based on given circuit properties and total initial electrical energy.
Technical Paper

Investigation of Gasoline Compression Ignition in a Heavy-Duty Diesel Engine Using Computational Fluid Dynamics

2021-04-06
2021-01-0493
A computational fluid dynamics (CFD) model was developed to explore gasoline compression ignition (GCI) combustion. Results were validated with single-cylinder engine (SCE) experiments. It was shown that the CFD model captured experimental results well. Cylinder pressure, heat release and emissions from the CFD model were also used to analyze the performance of GCI combustion with a current heavy-duty diesel engine platform. This work also provides detailed analysis on in-cylinder combustion and emissions using CFD. It was found that multiple injection strategy can deliver desirable fuel stratification profile that benefits both engine and emissions performance. A wave contoured piston was compared with a stepped-lip type piston for both GCI and Diesel combustion scenarios on the same engine platform. Stepped-lip pistons offer an opportunity to use multiple injection strategies to overcome high UHC emissions of GCI combustion when compared to wave pistons.
Technical Paper

Advances Toward the Goal of a Genuinely Conjugate Engine Heat Transfer Analysis

2019-01-15
2019-01-0008
As the design of engines advances and continues to push the capabilities of current hardware closer to their durability limits, more accurate and reliable analysis is necessary to ensure that designs are robust. This research evaluates a method of conjugate heat transfer analysis for a diesel engine that combines the combustion CFD, Engine FEA, and cooling jacket CFD with the aim of getting more accurate heat loss predictions and a more accurate temperature distribution in the engine than with current analysis methods. A 15.0 L Cummins ISX heavy duty engine operating at 1250 RPM and 15 bar BMEP load is selected for this work. Spray combustion computational fluid dynamics (CFD) simulations are performed for the diesel engine and the results are validated with experimental data. Finite Element Analysis (FEA) simulations were performed in a separate software platform.
Technical Paper

Evaluation of Diesel Spray with Non-Circular Nozzle - Part I: Inert Spray

2019-01-15
2019-01-0065
Numerous studies have characterized the impact of high injection pressure and small nozzle holes on spray quality and the subsequent impact on combustion. Higher injection pressure or smaller nozzle diameter usually reduce soot emissions owing to better atomization quality and fuel-air mixing enhancement. The influence of nozzle geometry on spray and combustion of diesel continues to be a topic of great research interest. An alternate approach impacting spray quality is investigated in this paper, specifically the impact of non-circular nozzles. The concept was explored experimentally in an optically accessible constant-volume combustion chamber (CVCC). Non-reacting spray evaluations were conducted at various ambient densities (14.8, 22.8, 30 kg/m3) under inert gas of Nitrogen (N2) while injection pressure was kept at 100 MPa. Shadowgraph imaging was used to obtain macroscopic spray characteristics such as spray structure, spray penetration, and the spray cone angle.
X