Refine Your Search

Search Results

Viewing 1 to 12 of 12
Journal Article

Numerical Study of the Influence of EGR on In-Cylinder Soot Characteristics in a Heavy-Duty Diesel Engine using CMC

2014-04-01
2014-01-1134
This paper presents numerical simulations of in-cylinder soot evolution in the optically accessible heavy-duty diesel engine of Sandia Laboratories performed with the conditional moment closure (CMC) model employing a reduced n-heptane chemical mechanism coupled with a two-equation soot model. The influence of exhaust gas recirculation (EGR) on in-cylinder processes is studied considering different ambient oxygen volume fractions (8 - 21 percent), while maintaining intake pressure and temperature as well as the injection configuration unchanged. This corresponds to EGR rates between 0 and 65 percent. Simulation results are first compared with experimental data by means of apparent heat release rate (AHRR) and temporally resolved in-cylinder soot mass, where a quantitative comparison is presented. The model was found to fairly well reproduce ignition delays as well as AHRR traces along the EGR variation with a slight underestimation of the diffusion burn portion.
Journal Article

Ignition Delays of Different Homogeneous Fuel-air Mixtures in a Rapid Compression Expansion Machine and Comparison with a 3-Stage-ignition Model Parameterized on Shock Tube Data

2013-10-14
2013-01-2625
An optically accessible Rapid Compression Expansion Machine (RCEM) has been used to investigate the homogeneous auto-ignition of five candidate fuels for Homogenous Charge Compression Ignition (HCCI) combustion. Two technical fuels (Naphthas) and three primary reference fuels (PRF), (n-heptane, PRF25 and PRF50) were examined. The Cetane Numbers (CN) of the fuels range from 35 to 56. The PRF25 and PRF50 were selected in order to approximately match the CN of the two Naphthas. Variation of the operating parameters has been performed, in regard to initial charge temperature of 383, 408, and 433K, exhaust gas recirculation (EGR) rate of 0%, 25%, and 50%, and equivalence ratio of 0.29, 0.38, 0.4, 0.53, 0.57, and 0.8. Pressure indication measurements, OH-chemiluminescence imaging, and passive spectroscopy were simultaneously implemented.
Journal Article

Experimental Investigation of Multi-In-Cylinder Pyrometer Measurements and Exhaust Soot Emissions Under Steady and Transient Operation of a Heavy-Duty Diesel Engine

2013-09-08
2013-24-0177
Future engine emission legislation regulates soot from Diesel engines strictly and requires improvements in engine calibration, fast response sensor equipment and exhaust gas aftertreatment systems. The in-cylinder phenomena of soot formation and oxidation can be analysed using a pyrometer with optical access to the combustion chamber. The pyrometer collects the radiation of soot particles during diffusion combustion, and allows the calculation of soot temperature and a proportional value for the in-cylinder soot density (KL). A four-cylinder heavy-duty Diesel engine was equipped in all cylinders with prototype pyrometers and state of the art pressure transducers. The cylinder specific data was recorded crank angle-resolved for a set of steady-state and transient operating conditions, as well as exhaust gas recirculation (EGR) addition and over a wide range of soot emissions.
Journal Article

Predicting In-Cylinder Soot in a Heavy-Duty Diesel Engine for Variations in SOI and TDC Temperature Using the Conditional Moment Closure Model

2013-09-08
2013-24-0016
Numerical simulations of in-cylinder soot evolution in the optically accessible heavy-duty diesel engine of Sandia National Laboratories have been performed with the multidimensional conditional moment closure (CMC) model using a reduced n-heptane chemical mechanism coupled with a two-equation soot model. Simulation results are compared to the high-fidelity experimental data by means of pressure traces, apparent heat release rate (AHRR) and time-resolved in-cylinder soot mass derived from optical soot luminosity and multiple wavelength pyrometry in conjunction with high speed soot cloud imaging. In addition, spatial distributions of soot relevant quantities are given for several operating conditions.
Journal Article

Optical Investigation of Sooting Propensity of n-Dodecane Pilot/Lean-Premixed Methane Dual-Fuel Combustion in a Rapid Compression-Expansion Machine

2018-04-03
2018-01-0258
The sooting propensity of dual-fuel combustion with n-dodecane pilot injection in a lean-premixed methane-air charge has been investigated using an optically accessible Rapid Compression-Expansion Machine (RCEM) to achieve engine-relevant pressure and temperature conditions at the start of pilot injection. A Diesel injector with a 100 μm single-hole coaxial nozzle, mounted at the cylinder periphery, has been employed to admit the pilot fuel. The aim of this study was to enhance the fundamental understanding of soot formation and oxidation processes of n-dodecane in the presence of methane in the air charge by parametric variation of methane equivalence ratio, charge temperature, and pilot fuel injection duration. The influence of methane on ignition delay and flame extent of the pilot fuel jet has been determined by simultaneous excited-state hydroxyl radical (OH*) chemiluminescence and Schlieren imaging.
Technical Paper

Combustion Features and Emissions of a DI-Diesel Engine with Air Path Optimization and Common Rail Fuel Injection

1998-08-11
981931
Emission and performance parameters of a medium size, and medium speed D.I. diesel engine equipped with a Miller System, a new developed High Pressure Exhaust Gas Recirculation System (HPEGR), a Common Rail (CR) system and a Turbocharger with Variable Turbine Geometry (VTG) have been measured and compared to the standard engine. While power output, fuel consumption, soot and other emissions are kept constant, nitric oxide emissions could be reduced by 30 to 50% depending on load and for the optimal combination of methods. Heat release rate analysis provides the reasons for the optimised engine behaviour in terms of soot and NOx emissions: The variable Nozzle Turbocharger helps deliver more oxygen to the combustion process (less soot) and lower the peak gas temperature (less NOx).
Technical Paper

Near-Wall Unsteady Premixed Flame Propagation in S.I. Engines

1995-02-01
951001
A computational study of the near-wall premixed flame propagation in homogeneous charge spark ignited engines is presented on the basis of a spectral concept accounting for flow-chemistry interaction in the flamelet regime. Flame surface enhancement due to wrinkling and modification of the local laminar flame speed due to flame stretch are the main phenomena described by the model. A high pass filter in the turbulent kinetic energy spectrum associated with the distance between the ensemble-averaged flame front location and the solid surface has been also introduced. In addition a probability density function of instantaneous flamelet positions around the above mean flame front location allows to consider statistical effects in a simplified way. Issues of temperature distribution within the boundary layer and associated heat losses, except for the concept of a thermal quenching distance, are thereby not explicitly taken into account.
Technical Paper

Reduction of NOx Emissions of D. I. Diesel Engines by Application of the Miller-System: An Experimental and Numerical Investigation

1996-02-01
960844
Emissions and performance parameters of a medium size, medium speed D.I. diesel engine with increased charge air pressure and reduced but fixed inlet valve opening period have been measured and compared to the standard engine. While power output and fuel consumption are slightly improved, nitric oxide emissions can be reduced by up to 20%. The measurements confirm the results of simulations for both performance and emissions, for which a quasidimensional model including detailed chemistry for nitric oxide prediction has been developed.
Technical Paper

A Computational Investigation of Unsteady Heat Flux Through an I.C. Engine Wall Including Soot Layer Dynamics

1997-02-24
970063
This paper deals with the influence of a wall soot layer of varying thickness on the unsteady heat transfer between the fluid and the engine cylinder wall during a full cycle of a four-stroke Diesel engine operation. For that purpose a computational investigation has been carried out, using a one-dimensional model of a multi-layer solid wall for simulating the transient response within the confinement of the combustion chamber. The soot layer is thereby of varying thickness over time, depending on the relative rates of deposition and oxidation. Deposition is accounted for due to a thermophoretic mechanism, while oxidation is described by means of an Arrhenius type expression. Results of the computations obtained so far show that the substrate wall temperature has a significant effect on the soot layer dynamics and thus on the wall heat flux to the combustion chamber wall.
Technical Paper

Integration of a Cool-Flame Heat Release Rate Model into a 3-Stage Ignition Model for HCCI Applications and Different Fuels

2014-04-01
2014-01-1268
The heat release of the low temperature reactions (LTR or cool-flame) under Homogeneous Charge Compression Ignition (HCCI) combustion has been quantified for five candidate fuels in an optically accessible Rapid Compression Expansion Machine (RCEM). Two technical fuels (Naphthas) and three primary reference fuels (PRF), (n-heptane, PRF25 and PRF50) were examined. The Cetane Numbers (CN) of the fuels range from 35 to 56. Variation of the operating parameters has been performed, in regard to initial charge temperature of 383, 408, and 433K, exhaust gas recirculation (EGR) rate of 0%, 25%, and 50%, and equivalence ratio of 0.29, 0.38, 0.4, 0.53, 0.57, and 0.8. Pressure indication measurements, OH-chemiluminescence imaging, and passive spectroscopy were simultaneously implemented. In our previous work, an empirical, three-stage, Arrhenius-type ignition delay model, parameterized on shock tube data, was found to be applicable also in a transient, engine-relevant environment.
Technical Paper

Numerical Study of Turbulence and Fuel-Air Mixing within a Scavenged Pre-Chamber Using RANS and LES

2019-04-02
2019-01-0198
It is well-known that the spatial distribution of turbulence intensity and fuel concentration at spark-time play a pivotal role on the flame development within the pre-chamber in gas engines equipped with a scavenged pre-chamber. The combustion within the pre-chamber is in turn a determining factor in terms of combustion behaviour in the main chamber, and accordingly it influences the engine efficiency as well as pollutant emissions such as NOx and unburned hydrocarbons. This paper presents a numerical analysis of fuel concentration and turbulence distribution at spark time for an automotive-sized scavenged pre-chamber mounted at the head of a rapid compression-expansion machine (RCEM). Two different pre-chamber orifice orientations are considered: straight and tilted nozzles. The latter introduce a swirling flow within the pre-chamber. Simulations have been carried out using with two different turbulence models: Reynolds-Averaged Navier-Stokes (RANS) and Large-Eddy Simulation (LES).
Technical Paper

Numerical Investigation of Soot Dynamics at Engine-Relevant Conditions

2018-04-03
2018-01-0204
Formation of soot in an auto-igniting n-dodecane spray under diesel engine relevant conditions has been investigated numerically. As opposed to research addressing turbulence-chemistry interaction (TCI) by coupling diffusive turbulence models with more sophisticated models in the context of Reynolds-Averaged Navier-Stokes equations (RANS), this study employs the advanced sub-grid scale k-equation model in the framework of a Large Eddy Simulation (LES) together with the uninvolved Direct Integration (DI) approach. A reduced n-heptane chemical mechanism has been employed and artificially accelerated in order to predict the ignition for n-dodecane accurately. Soot processes have been modelled with an extended version of the semi-empirical, two-equation model of Leung, which considers C2H2 as the soot precursor and accounts for particle inception, surface growth by C2H2 addition, oxidation by O2, oxidation by OH and particle coagulation.
X