Refine Your Search

Topic

Search Results

Viewing 1 to 20 of 20
Technical Paper

The Relative Sensitivity of Size and Operational Conditions on Basic Tire Maneuvering Properties

2002-03-04
2002-01-1182
Basic performance properties of tires significantly influence the lateral/directional (steering) stability and handling of highway vehicles. These properties include cornering stiffness and peak and slide coefficients of friction. This paper considers some detailed tire machine measurements of lateral tire performance. A large database of tire properties for a wide range of highway vehicles is also analyzed. A regression analysis approach is used to define the sensitivity of various size and operational (speed, pressure and load) characteristics on tire behavior. The paper discusses the manner in which these properties vary with tire size and operational conditions, and the effect of the properties on vehicle stability and handling.
Technical Paper

Combined Terrain, Vehicle, and Digital Human Models Used for Human Operator Performance Analysis

2004-06-15
2004-01-2152
A combined biodynamic and vehicle model is used to assess the vibration and performance of a human operator performing driving and other tasks. The other tasks include reaching, pointing and tracking by the driver and/or passenger. This analysis requires the coordinated use of separate and mature software programs for anthropometrics, vehicle dynamics, biodynamics, and systems analysis. The total package is called AVB-DYN, an acronym for Anthropometrics, Vehicle, and Bio-DYNamics. The objectives and architecture are discussed, and then a preliminary version of this package is demonstrated in an example where a HMMWV (High Mobility Multipurpose Wheeled Vehicle) operator is performing a driving task.
Technical Paper

A Biodynamic Model for the Assessment of Human Operator Performance under Vibration Environment

2005-06-14
2005-01-2742
A combined biodynamic and vehicle model is used to assess the vibration and performance of a human operator performing driving and other tasks. The other tasks include reaching, pointing and tracking by the driver and/or passenger. This analysis requires the coordinated use of separate and mature software programs for anthropometrics, vehicle dynamics, biodynamics, and systems analysis. The total package is called AVB-DYN, an acronym for Anthropometrics, Vehicle and Bio-DYNamics. The biodynamic component of AVB-DYN is described, and then compared with an experiment that studied human operator in-vehicle reaching performance using the U.S. Army TACOM Ride Motion Simulator.
Technical Paper

Analysis and Computer Simulation of Driver/Vehicle Interaction

1987-05-01
871086
This paper presents an analysis of driver/vehicle performance over a range of maneuvering conditions including accident avoidance scenarios involving vehicle limit performance handling. Driver behavior is considered in the same dynamic analysis terms as vehicle response in order to give appropriate closed-loop measures of total system maneuvering capability and handling stability. A driver control structure is developed along with closed-loop system stability constraints on model parameters over a wide range of vehicle maneuvering conditions. Example simulation runs are presented for several accident avoidance scenarios.
Technical Paper

Tire Modeling for Off-Road Vehicle Simulation

2004-05-04
2004-01-2058
A tire/terrain interaction model is presented to support the dynamic simulation of off-road ground vehicle. The model adopts a semi-empirical approach that is based on curve fits of soil data combined with soil mechanics theories to capture soil compaction, soil shear deformation, and soil passive failure that associate with off-road driving. The resulting model allows the computation of the tire forces caused by terrain deformation in longitudinal and lateral direction. This model has been compared with experimental data and shown reasonable prediction of the tire/terrain interaction.
Technical Paper

Tire Modeling Requirements for Vehicle Dynamics Simulation

1995-02-01
950312
The physical forces applied to vehicle inertial dynamics derive primarily from the tires. These forces have a profound effect on handling. Tire force modeling therefore provides a critical foundation for overall vehicle dynamics simulation. This paper will describe the role tire characteristics play in handling, and will discuss modeling requirements for appropriately simulating these effects. Tire input and output variables will be considered in terms of their relationship to vehicle handling. General computational requirements will be discussed. An example tire model will be described that allows for efficient computational procedures and provides responses over the full range of vehicle maneuvering conditions.
Technical Paper

Low Cost Driving Simulation for Research, Training and Screening Applications

1995-02-01
950171
Interactive driving simulation is attractive for a variety of applications, including screening, training and licensing, due to considerations of safety, control and repeatability. However, widespread dissemination of these applications will require modest cost simulator systems. Low cost simulation is possible given the application of PC level technology, which is capable of providing reasonable fidelity in visual, auditory and control feel cuing. This paper describes a PC based simulation with high fidelity vehicle dynamics, which provides an easily programmable visual data base and performance measurement system, and good fidelity auditory and steering torque feel cuing. This simulation has been used in a variety of applications including screening truck drivers for the effects of fatigue, research on real time monitoring for driver drowsiness and measurement of the interference effect of in-vehicle IVHS tasks on driving performance.
Technical Paper

Driver/Vehicle Modeling and Simulation

2002-05-07
2002-01-1568
This paper describes the driver/vehicle modeling aspects of a computer simulation that can respond to highway engineering descriptions of roadways. The driver model interacts with a complete vehicle dynamics model that has been described previously. The roadway path is described in terms of horizontal and vertical curvature and cross slopes of lanes, shoulders, side slopes and ditches. Terrain queries are made by the vehicle dynamics to locate tires on the roadway cross-section, and to define vehicle path and road curvature at some distance down the road. The driver model controls steering to maintain lateral lane position. Speed is maintained at a speed limit on tangents, and decreased as needed to maintain safe lateral acceleration. Because the bandwidth of longitudinal (speed) control is much lower than lateral/directional (steering) control, the driver model looks further ahead for speed control than for steering.
Technical Paper

Driver Car Following Behavior Under Test Track and Open Road Driving Condition

1997-02-24
970170
This paper describes the results of an experiment concerning driver behavior in car following tasks. The motivation for this experiment was a desire to understand typical driver car following behavior as a guide for setting the automatic control characteristics of an ACC (Adaptive Cruise Control) system. Testing was conducted under both test track and open road driving conditions. The results indicate that car following is carried out under much lower bandwidth conditions than typical steering processes. Dynamic analysis shows driver time delay in response to lead vehicle velocity change on the order of several seconds. Typical longitudinal acceleration distributions show standard deviations of less than 0.05 g (acceleration due to gravity).
Technical Paper

Estimation of Passenger Vehicle Inertial Properties and Their Effect on Stability and Handling

2003-03-03
2003-01-0966
Vehicle handling and stability are significantly affected by inertial properties including moments of inertia and center of gravity location. This paper will present an analysis of the NHTSA Inertia Database and give regression equations that approximate moments of inertia and center of gravity height given basic vehicle properties including weight, width, length and height. The handling and stability consequences of the relationships of inertial properties with vehicle size will be analyzed in terms of previously published vehicle dynamics models, and through the use of a nonlinear maneuvering simulation.
Technical Paper

Vehicle Stability Considerations with Automatic and Four Wheel Steering Systems

1993-11-01
931979
Automatic and four wheel steering control laws are often developed from the performance point of view to optimize rapid response. Under linear tire operating conditions (i.e., maneuvering at less than .5g's) both performance and safety conditions can be simultaneously met. Under severe operating conditions, such as might be encountered during crash avoidance maneuvering, tire characteristics can change dramatically and induce directional dynamic instability and spinout. The challenge in automatic and four wheel steering system design is to achieve a compromise between performance and safety. This paper will describe analyses carried out with a validated vehicle dynamics computer simulation that shed some light on the vehicle and control characteristics that influence tradeoffs between performance and safety. The computer simulation has been validated against field test data from twelve vehicles including passenger cars, vans, pickup trucks and utility vehicles.
Technical Paper

Physiological and Response Measurements in Driving Tasks

1972-02-01
720139
Driver response and performance can be quantified by observing the stimulus-response environment. Yet the driver's inherent adaptability allows him to have seemingly adequate performance in potentially hazardous driving situations even though he may be operating near the acceptable safety limits. Physiological measures of the driver's internal state can provide further quantification of his performance level and can give a measure of his workload or safety performance margin. Measures of driver physiological and control responses have been made under gust disturbance conditions with the subject's car operating at various speeds. The experimental techniques and data are described, and correlations between the situational parameters and driver stress and control response are shown.
Technical Paper

The Effect of Adverse Visibility on Driver Steering Performance in an Automobile Simulator

1977-02-01
770239
The driver's ability to control the lateral position of an automobile is dependent on his perception of the command path (roadway) to be followed. This perception is affected by both the configuration of road markings and other features, and the visibility of these elements. As visibility decreases, the driver's preview of the commanded path is reduced. Theory indicates that driver performance should degrade with reduced preview and configurational parameters which characterize the intermittent nature of delineation (e.g., dashed lines). This paper describes a simulation experiment in which driver behavior and driver/vehicle system performance were measured over a range of visibility and configuration parameter variations. Driver dynamic response and noise (remnant) were reliably affected by variations in visibility and configuration. These effects were also reflected in system performance measures such as lane deviations.
Technical Paper

Test Methods and Computer Modeling for the Analysis of Ground Vehicle Handling

1986-08-01
861115
This paper presents test methods and modeling procedures for identifying the directional handling characteristics of vehicles over the full maneuvering range from straight running to limit cornering and/or braking. The test procedures are designed to validate steady-state and dynamic response performance. The model parameters are derived from simple static tests of vehicle properties and tire parameters identified from tire machine tests. Current steady-state field test procedures validate the model response under cornering only conditions. Model analysis then extrapolates vehicle response under combined cornering and braking conditions. Some discussion is devoted to potential braking in a turn transient testing for more complete model validation.
Technical Paper

Requirements for Vehicle Dynamics Simulation Models

1994-03-01
940175
Computer simulation and real-time, interactive approaches for analysis, interactive driving simulation, and hardware-in-the-loop testing are finding increasing application in the research and development of advanced automotive concepts, highway design, etc. Vehicle dynamics models serve a variety of purposes in simulation. A model must have sufficient complexity for a given application but should not be overly complicated. In interactive driving simulation, vehicle dynamics models must provide appropriate computation for sensory feedback such as visual, motion, auditory, and proprioceptive cuing. In stability and handling simulations, various modes must be properly represented, including lateral/directional and longitudinal degrees of freedom. Limit performance effects of tire saturation that lead to plow out, spin out, and skidding require adequate tire force response models.
Technical Paper

Meeting Important Cuing Requirements with Modest, Real-Time, Interactive Driving Simulations

1994-03-01
940228
Interactive simulation requires providing appropriate sensory cuing and stimulus/response dynamics to the driver. Sensory feedback can include visual, auditory, motion, and proprioceptive cues. Stimulus/response dynamics involve reactions of the feedback cuing to driver control inputs including steering, throttle and brakes. The stimulus/response dynamics include both simulated vehicle dynamics, and the response dynamics of the simulation hardware including computer processing delays. Typically, simulation realism will increase with sensory fidelity and stimulus/response dynamics that are equivalent to real-world conditions (i.e. without excessive time delay or phase lag). This paper discusses requirements for sensory cuing and stimulus/response dynamics in real-time, interactive driving simulation, and describes a modest fixed-base (i.e. no motion) device designed with these considerations in mind.
Technical Paper

Validation of Ground Vehicle Computer Simulations Developed forDynamics Stability Analysis

1992-02-01
920054
This paper describes validation work carried out for two vehicle dynamics computer simulation programs. One program, referred to as VDANL (Vehicle Dynamics Analysis NonLinear), is intended to simulate passenger cars, vans and light trucks. The second program simulates All Terrain Vehicles (ATVs) and is referred to as NLATV (NonLinear ATV). The programs have been checked out and validated for a variety of maneuvering conditions and a broad range of vehicles. The programs run on IBM-PC/MS DOS compatible computers, and numerical methods have been used to give numerically stable solutions with reasonable computational speed over a broad range of maneuvering situations.
Technical Paper

Steady State and Transient Analysis of Ground Vehicle Handling

1987-02-23
870495
This paper presents simple linear and non-linear dynamic models and numerical procedures designed to permit efficient vehicle dynamics analysis on microcomputers. Vehicle dynamics are dominated by tire forces and their precursor input variables, and a few inertial and suspension properties. The steady state and dynamic models discussed herein include a comprehensive, unlimited maneuver tire model with relatively simple vehicle suspension kinematics and inertial dynamics to cover the full vehicle maneuvering range from straight running to combined limit cornering and braking or acceleration. An attempt was made to minimize the required tire and vehicle model parameter set and to include easily obtainable parameters. The computer analysis procedures include: A steady state model for determining perturbation side force coefficients, and a stability factor and maneuvering time constant for lateral/directional control.
Technical Paper

A Computer Simulation Analysis of Safety Critical Maneuvers for Assessing Ground Vehicle Dynamic Stability

1993-03-01
930760
Ground vehicle dynamic stability, including spinout and rollover, is highly dependent on maneuvering conditions and the nonlinear force response characteristics of tires. Depending on vehicle configuration, unstable behavior requires high, sustained lateral acceleration, and some maneuver induced excitation of the roll and yaw mode dynamics. Dynamic instability in some vehicles can be induced by a steering reversal maneuver that involves sustained limit performance lateral acceleration. Using a validated vehicle dynamics simulation, analysis is presented to illustrate what constitutes a critical stability sensitive maneuver. Two example test cases are used to show that a critical stability sensitive maneuver must be more severe than a single lane change. Even reaching tire saturation limits during an aggressive single lane change does not give the sustained lateral acceleration required to provoke instability conditions.
Technical Paper

A Low Cost PC Based Driving Simulator for Prototyping and Hardware-In-The-Loop Applications

1998-02-23
980222
This paper describes a low cost, PC based driving simulation that includes a complete vehicle dynamics model (VDM), photo realistic visual display, torque feedback for steering feel and realistic sound generation. The VDM runs in real-time on Intel based PCs. The model, referred to as VDANL (Vehicle Dynamics Analysis, Non-Linear) has been developed and validated for a range of vehicles over the last decade and has been previously used for computer simulation analysis. The model's lateral and longitudinal dynamics have 17 degrees of freedom for a single unit vehicle and 33 degrees of freedom for an articulated vehicle. The model also includes a complete drive train including engine, transmission and front and rear drive differentials, and complete, power assisted braking and steering systems. A comprehensive tire model (STIREMOD) generates lateral and longitudinal forces and aligning torque based on normal load, camber angle and horizontal (lateral and longitudinal) slip.
X