Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

A Human Factors Simulation Investigation of Driver Route Diversion and Alternate Route Selection Using In-Vehicle Navigation Systems

1991-10-01
912731
This paper describes a human factors simulation study of the decision making behavior of drivers attempting to avoid nonrecurring congestion by diverting to alternate routes with the aid of in-vehicle navigation systems. This study is the first phase of a two part project in which the second phase will apply the driver behavior data to a simulation model analysis of traffic flow. The object of the driver behavior experiment was to compare the effect of various experimental navigation systems on driver route diversion and alternate route selection. The experimental navigation system configurations included three map based systems with varying amounts of situation information and a non map based route guidance system. The overall study results indicated that navigation system characteristics can have a significant effect on driver diversion behavior, with better systems allowing more anticipation of traffic congestion.
Technical Paper

A Human Factors Study of Driver Reaction to In-Vehicle Navigation Systems

1991-08-01
911680
This paper describes a laboratory simulation study of driver reaction to in-vehicle navigation systems. The study included a pre-test questionnaire on demographic background and commuting behavior, simulation testing of navigation decision making, and a post-test questionnaire on navigation behavior and reactions to in-vehicle navigation systems and the laboratory simulation. A total of 277 subjects, both male and female, were employed over a wide range of ages. Test subjects were assigned to one of four navigation system groups or a no-system control group for the purpose of comparing system performance. The simulation task required subjects to experience a commuting ‘drive’ on a Southern California freeway route and minimize trip time by diverting off the main route to avoid congestion. Subjects were given orientation and training on the simulation and their navigation system condition, and were motivated by rewards and penalties to minimize trip time.
Technical Paper

The Use of Simulation in Truck Safety Research, Driver Training and Proficiency Testing

1990-10-01
902271
Real time man-in-the-loop simulation can be used in a variety of research, testing and training roles where safety, efficiency and/or economy are important. Simulation can allow complete control and uniformity over driving conditions and permit analysis of a range of vehicle and driver behavior variables. Simulation complexity and fidelity requirements will vary depending on application requirements. This paper reviews past and current driving simulation development efforts and applications. Simulation requirements are assessed relative to various applications, including vehicle handling, driver behavior, training, licensing and fitness for duty testing.
Technical Paper

Characteristics Influencing Ground Vehicle Lateral/Directional Dynamic Stability

1991-02-01
910234
Lateral/directional dynamics involve vehicle yawing, rolling and lateral translation motions and dynamic stability concerns directional behavior (i.e. spinout) and rollover. Previous research has considered field test and computer simulation methods and results concerning lateral/directional stability. This paper summarizes measurements and simulation analysis of a wide range of vehicles regarding directional and rollover stability. Directional stability is noted to be strongly influenced by lateral load transfer distribution (LTD) between the front and rear axles LTD influences tire side force saturation properties, and should be set up so that side forces at the rear axle do not saturate before the front axle under hard maneuvering conditions in order to avoid limit oversteer and spinout.
Technical Paper

Field Testing and Computer Simulation Analysis of Ground Vehicle Dynamic Stability

1990-02-01
900127
This paper considers ground vehicle lateral/directional stability which is of primary concern in traffic safety. Lateral/directional dynamics involve yawing, rolling and lateral acceleration motions, and stability concerns include spinout and rollover. Lateral/directional dynamics are dominated by tire force response which depends on horizontal slip, camber angle and normal load. Vehicle limit maneuvering conditions can lead to tire force responses that result in vehicle spinout and rollover. This paper describes accident analysis, vehicle testing and computer simulation analysis designed to give insight into basic vehicle design variables that contribute to stability problems. Field test procedures and results for three vehicles are described. The field test results are used to validate a simulation model which is then analyzed under severe maneuvering conditions to shed light on dynamic stability issues.
Technical Paper

A Downhill Grade Severity Rating System

1981-11-01
811263
A Grade Severity Rating System (GSRS) was developed as a means for reducing the incidence and severity of truck accidents on downgrades. The ultimate result is a roadside sign at the top of each hill. The sign is tailored to the individual hill and gives a recommended maximum speed (to be held constant for the entire grade descent) for each of several truck weight ranges. This concept represents a major step forward in terms of grade descent safety because it tells the driver what to do directly, rather than giving him information which still requires evaluation under different loading conditions.
X