Refine Your Search

Topic

Author

Search Results

Technical Paper

Simulation of Clutch Inertial Effects on Gear Shifting, Synchronizer Capacity and Accelerated Testing of Synchronizers

2013-11-27
2013-01-2807
In today's scenario, most of the OEMs use manual transmissions with synchronizer gear shifting system for ease of gear shifting. It gives very high fuel efficiency. Gear shifting is a customer touch point, hence it is very important to select adequate synchronizer capacity so that it will perform in better and last longer. To test the synchronizers, there are many test methods which give the idea about life of synchronizer and its performance, in different conditions. Regular synchronizer rig tests consume lot of time in deriving the results. So it is very important to find out a way which will give same results within short time period. To carry out the short time test or accelerated test, we need to understand the effect of various factors like reflected inertia, drag torque, differential speed, synchronizing time, and gear shifting force on synchronizer capacity.
Technical Paper

Performance Optimization of Electronically Controlled Hydraulic Fan Drive (HFD) Used in Commercial Application

2016-04-05
2016-01-0182
Ever tightening emission limits and constant pressure for increasing engine power are resulting in increased engine operating temperature. This coupled with continuous drive for fuel economy improvement because of the stiff competition are forcing OEMs to explore alternative cooling solutions resulting in less power take off and quick response as cooling requirement shoots up. Aim of this paper is to analyze the relative benefits of incorporating a new cooling fan drive system concept over conventional viscous fan driven cooling system with step-less variable speed control independent of engine speed variation. Hydraulic fan drive system control fan rpm based on the fluid temperature as compared to air temperature in viscous coupling fan drive system. HFD system provides quick response when increase in coolant temperature is observed. HFD system in this way provide more control on fan rpm.
Technical Paper

Improvement in Shift Quality in a Multi Speed Gearbox of an Electric Vehicle through Synchronizer Location Optimization

2017-03-28
2017-01-1596
Electrical and Series Hybrid Vehicles are generally provided with single speed reduction gearbox. To improve performance and drive range, a two-speed gearbox with coordinated control of traction motor and gearshift actuator is proposed. For a two-speed gearbox, gearshift without clutch would increase the shifting effort. Active Synchronization is introduced for a smoother gearshift even without clutch. The quality of gearshift is considered as a function of applied shift force and time taken. To enhance the quality of the gearshift further, the location of the synchronizer in the transmission system is optimized. To validate the improvement in the quality of the gearshift, a mathematical model of the two-speed gearbox incorporating proposed location of synchronizer assembly along with active synchronization is developed. The qualitative and quantitative analysis of the results achieved is presented.
Technical Paper

Simulation of Heavy Commercial Vehicle Response to Rear Super Single Tire Blow Out

2017-01-10
2017-26-0341
The fuel economy of heavy commercial vehicles can be significantly improved by reducing the rolling resistance of tires. To reduce the rolling resistance of 6×4 tractor, the super single tires instead of rear dual wheel tires are tried. Though the field trials showed a significant increase in fuel economy by using super single tires, it posed a concern of road safety when these tires blowout during operation. Physical testing of tire blowout on vehicle is very unsafe, time consuming and expensive. Hence, a full vehicle simulation of super single tire blowout is carried out. The mechanical properties of tires such as cornering stiffness, radial stiffness and rolling resistance changes during the tire blowout; this change is incorporated in simulation using series of events that apply different gains to these mechanical properties.
Technical Paper

Body Block FE Model Development and Correlation with Physical Tests

2017-01-10
2017-26-0293
Steering column and steering wheel are critical safety components in vehicle interior environment. Steering system needs to be designed to absorb occupant impact energy in the event of crash thereby reducing the risk of injury to the occupant. This is more critical for non-airbag vehicle versions. To evaluate the steering system performance, Body block impact test is defined in IS11939 standard [1]. Nowadays for product development, CAE is being extensively used to reduce development cycle time and minimize number of prototypes required for physical validation. In order to design the steering system to meet the Body Block performance requirements, a detailed FE model of Body Block impactor is required. The static stiffness and moment of inertia of body block are defined in SAE J244a [2]. The reference data available in SAE J244a is not sufficient to develop a Body Block model that would represent the physical impactor.
Technical Paper

Weight Optimisation of Dumper Body Structure Conserving Stiffness, Buckling and Dent Performance

2017-01-10
2017-26-0304
The entire commercial vehicle industry is moving towards weight reduction to leverage on the latest materials available to benefit in payload & fuel efficiency. General practice of weight reduction using high strength steel with reduced thickness in reference to Roark’s formula does not consider the stiffness & dent performance. While this helps to meet the targeted weight reduction keeping the stress levels within the acceptable limit, but with a penalty on stiffness & dent performance. The parameters of stiffener like thickness, section & pitching are very important while considering the Stiffness, bucking & dent performance of a dumper body. The Finite Element Model of subject dumper body has been studied in general particularly on impact of dent performance and is correlated with road load data to provide unique solution to the product. The impact of payload during loading of dumper is the major load case.
Technical Paper

Crash Pulse Characterization for Restraints System Performance Optimization

2015-01-14
2015-26-0152
The vehicle crash signature (here on referred as crash pulse) significantly affects occupant restraints system performance in frontal crash events. Restraints system optimization is usually undertaken in later phase of product development. This leads to sub-optimal configurations and performance, as no opportunity exists to tune vehicle structure and occupant package layouts. In concept phase of development, crash pulse characterization helps to map occupant package environment with available structure crush space and stiffness. The crash pulse slope, peaks, average values at discrete time intervals, can be tuned considering library of restraints parameters. This would help to derive an optimal occupant kinematics and occupant-restraints interaction in crash event. A case study has been explained in this paper to highlight the methodology.
Journal Article

Development of 1.2L Gasoline Turbocharged MPFI Engine for Passenger Car Application

2017-01-10
2017-26-0026
In the emerging technology trend, there is continuous demand for increase in engine performance in terms of power & torque while providing competitive fuel efficiency. Understanding and fulfillment of complex customer requirements with affordable technology is extremely challenging. In order to meet potential conflicting needs and offer ‘fun to drive’ experience to customers, Tata Motors has developed first in segment turbocharged gasoline MPFI engine. Further in order to create market differentiator, multi drive modes were introduced as segment first feature. The boosted compact 1200 cc engine while developing 90 Ps power, delivers 140 N-m torque over a wide range of 1500-4000 rpm, best suited for Indian drive conditions. This performance boost is nearly 40% over and above performance of comparable NA engine without any compromise on vehicle level fuel efficiency.
Technical Paper

Vehicle Level Remote Range Improvement with Low Cost Approach

2012-04-16
2012-01-0789
Basic Function: Vehicle remote is used for vehicle lock/unlock/search/Hazard lights /approach light functions for customer convenience and vehicle security system. Conventional approach: 1 Use of separate RF (Radio Frequency) receiver -Additional Cost impact. 2 High remote RF power - Reduced remote battery life and bigger remote size required 3 High sensitivity RF receiver - High cost. Low Cost approach: It involves the followings: 1 Integration of RF receiver inside the Body Control Module (BCM). 2 Low Power Remote and Optimization of Remote PCB layout to get the maximum power. 3 External wired antenna taken out from BCM and proper routine need be ensured to get the best performance. 4 BCM mounting location to get the best remote range in all vehicle directions. This paper relates to the methodology for low cost approach for the RF communication between remote transmitter and receiver with achieving the best remote performance at vehicle level condition.
Technical Paper

Low Cost Hardware Design Techniques for Robust and Reliable Power-Supply Circuits for Automotive ECUs

2012-04-16
2012-01-0790
Power-supply forms a key hardware block for every automotive ECU. Apart from delivering robust and reliable logic supply voltages it is also burdened with many auxiliary tasks like transient protection, good EMI/EMC performance, Power-hold function, Analog Sensor supply voltage etc. It also needs to meet all automotive norms including short to battery/ground etc. This paper discusses low cost implementation techniques which maximize the value delivered to the vehicle application at minimal cost. Innovative techniques are described for combining sensor and logic supplies wherever applicable. Hurdles faced during such circuit optimization are clearly explained along with the solutions adopted to overcome hurdles yet meeting automotive test norms. A novel low cost concept which combines transient protection as well as power-hold function (without using the conventional relay based technique) further adds value to the end application.
Technical Paper

Energy Efficient Hydraulic Power Assisted Steering System (E2HPAS)

2012-04-16
2012-01-0976
A hydraulic-assisted power steering system on a vehicle has a steering pump which is directly driven from the engine continuously. In real world, the assistance from the steering pump is useful only while maneuvering. During a typical highway drive, assistance from this power steering pump remains unused for majority (76%) of the time; although the continuously rotating power steering pump keeps consuming energy from the engine. An electronic controller has been provided for the electro-magnetic pairing device of the power steering pump in order to provide assistance for steering based on driver demand only. The electromagnetic pairing device integrated on the steering pump can be made to engage/disengage based on the driver demand through the electronic controller.
Technical Paper

Solar Assisted Vehicle Electrical System (S.A.V.E.)

2012-04-16
2012-01-1058
S.A.V.E. (SOLAR-ASSISTED VEHICLE ELECTRICAL SYSTEM) is a microcontroller-based closed loop system designed to optimize the duty cycle of alternator in conventional vehicle electrical system. This has been done by integrating a SOLAR PANEL on the rooftop of a popular hatchback. The SOLAR PANEL supplies continuous power to battery for charging thereby reducing alternator duty cycle. Consequently, in order to optimize/control alternator functioning based on demand, a microcontroller has been incorporated. S.A.V.E. consists of a microcontroller which senses the instantaneous electrical load (in terms of current & voltage drawn) from battery. The controller using the intelligent algorithm keeps on checking this real-time consumption with the threshold values & decides when to activate/deactivate alternator. Thus with this controller, a) reduction in actual CO₂ emission & consequent, and b) 6% improvement in vehicle fuel efficiency has been achieved.
Technical Paper

Development and Prediction of Vehicle Drag Coefficient Using OpenFoam CFD Tool

2019-01-09
2019-26-0235
Vehicle aerodynamic design has a critical impact on fuel efficiency of the vehicle. Reducing aerodynamic wind resistance of the vehicle's exterior shape and reducing losses associated with requirements for engine compartment cooling through vehicle front openings plays key role in achieving desired aerodynamic efficiency. Today fairly large number of computational fluid dynamics (CFD) simulations are being performed during the vehicle aerodynamic design and development process and it is rapidly increasing day by day. Vehicle aerodynamic design and development process involves mainly aerodynamic shape development, aerodynamic optimizations of vehicle external components (side view mirror, spoilers, underbody shield etc.) and number of” what if studies during preliminary design process. Licensing costs of the available commercial CFD simulation solver has significant impact on product development cost when numbers of aerodynamic simulations expand.
Technical Paper

Fiber Reinforced Plastic Durability: Nonlinear Multi-Scale Modeling for Structural Part Life Predictions

2019-01-09
2019-26-0278
OEMs are seeking to develop vehicle light weighting strategies that will allow them to meet weight and fuel economy targets hence increasingly shifting their focus towards incorporating lighter material solutions at mass produced scales. Composites are seen by automotive manufacturers as the solution to lightweight vehicles without affecting their performance. More and more parts are made of short fiber reinforced plastics (SFRP) as well as continuous fiber composites. However, replacing metals by composites requires a new design approach and a clear understanding of the composite behavior. This paradigm however requires a dedicated tool for composite design in order to take into account the specific composite behavior. Traditional design tools are not able to state accurately the composite material behavior and sometime leading to use high safety of factors and lack of confidence in the design.
Technical Paper

A Method to Evaluate Impact of Power Steering on Fuel Economy and Optimization

2019-01-09
2019-26-0309
Vehicle manufacturers strive hard to achieve best in class fuel economy. Apart from light weighting of the structures, driveline optimization and reduction of tire rolling resistance, tapping of parasitic losses is also important and helps to optimize the design of auxiliary power consuming systems. One of such system studied in this work is power steering system. The effect of parasitic losses on fuel economy is predominant for small commercial vehicle compare to heavy vehicles. The evaluation of deterioration in the fuel economy due to implementation of power steering system on one of the small commercial vehicle is carried out using multiple virtual simulation tools. Virtual route profile is modelled using longitude, latitude and altitude data captured through GPS and steering duty cycle is mapped in terms of steering rotation angle. A system level model of hydraulic power steering system is developed.
Technical Paper

Energy Based Analytical Study of Effect of Engine Calibration, Clutch Modulation on the Life of Dry Clutch in View of City Traffic Using Road Load Data

2019-01-09
2019-26-0331
Single plate dry clutch is one of the most abuse components in the vehicle. With the growing population of traffic in cities, useful life of clutch is affected drastically which is evident from the rise in complaints on clutch from metropolitan cities. The governing design parameter, which affects the life of clutch, is the energy dissipated in clutch per unit area of friction lining of clutch disc. The life of clutch is affected by many factors like vehicle weight, engine torque, driveline ratios, friction lining, size of clutch, which are taken into consideration during design stage of the clutch. Apart from these factors, one more factor, engine calibration, affects the clutch life drastically. However, it is not taken into consideration during design stage owing to its inherent nature as it gets matured over the vehicle development program.
Technical Paper

Simulation Based Development, Component Optimization and Integration for a Metropolitan Hybrid Electric Vehicle

2017-01-10
2017-26-0084
The authors of this technical paper conceptualize and illustrate a powertrain architecture for a hybrid electric vehicle coupled with a unique strategy to reduce a real life problem of driving in snail paced traffic. This architecture utilizes a relatively low powered hybrid electric prime mover that is generally used in mild hybrid vehicles, in an arrangement similar to a parallel hybrid system. Here, the electric machine is mounted on the input shaft of the gearbox and the clutch is actuated automatically through an Automated Manual Transmission (AMT) system. Therefore, it is possible to completely disengage the engine from the driveline and drive the vehicle independently through an appropriately sized electric prime mover. The high gear ratio between the drivetrain and the electric prime mover at lower gears can be leveraged to provide low velocity electric creep mode during which the vehicle can function as a pure Electric Vehicle (EV) while engine remains off.
Technical Paper

Electro-Magnetic Parking Brake System for Electric Vehicles

2019-01-09
2019-26-0119
Regular vehicle has the advantage of Engine resistance even when it is not fired, hence chances of vehicle roll back on gradients will be minimized. This is not the case for Electric vehicles, which uses an electric motor that does not have any resistance offered to wheels that prevent vehicle roll back on gradient. This leads to increased load on the conventional hydraulic brakes due to absence of engine inertia. Hence, there is a need for a low cost and reliable automatic braking system which can help in holding the vehicle and assists the driver during launch in case he need to stop at a gradient. An Electromagnetic brake (EM brake) system can be used as a solution for the above-mentioned requirement. EM brake can provide hill hold and hill assist effect in addition to automatic parking brake application when the vehicle is turned-off. This system will assist anyone who need to halt the vehicle at a gradient and then relaunch it without much struggle.
Technical Paper

Refurbished and Repower: Second Life of Batteries from Electric Vehicles for Stationary Application

2019-01-09
2019-26-0156
Rising environmental concerns and depleting natural resources have resulted in faster adoption of green technologies. These technologies are pushed by the government of states through certain schemes and policies as to make the orbit shift ensuring greener environment in near future. Major actions can be easily seen in transportation sector. Hybrid Electric Vehicle (EV), EV and Fuel cell EV are being deployed on roads rapidly but even though some challenges are still unsolved such as battery cost, fast charging and life cycle of the automotive battery. Automotive batteries (Lithium ions) are declared as unfit for automotive usage after the loss of 20% to 15% of their initial capacity. Still 80% to 85% of battery capacity can be utilized in stationary applications other than automotive. Stationary application doesn’t demand high current density or energy density from the battery pack as of automotive requirements.
Technical Paper

Development of a Polymer Electrolyte Membrane Fuel Cell Stack for a Range Extender for Electric Vehicles

2019-01-09
2019-26-0087
Severe air pollution in cities caused largely by vehicular emissions, which requires urgent remedial measures. As automobiles are indispensable modes of personal and public mobility, pre-emptive efforts are necessary to reduce the adverse effects arising from their operation. A significant improvement in air quality can be achieved through large-scale introduction of vehicles with extremely low emission such as hybrid-electric and zero emission vehicles. Range extension of electric vehicles (EVs) is also of utmost importance to alleviate the handicap of restricted mileage of purely plug-in EVs as compared to conventional vehicles. This paper presents development of a polymer electrolyte membrane (PEM) fuel cell stack used for the range extender electric vehicles. The Fuel cell stack for range extender vehicle operated in a dead end mode using hydrogen and air as open cathode.
X