Refine Your Search

Topic

Search Results

Journal Article

An Intelligent Alternator Control Mechanism for Energy Recuperation and Fuel Efficiency Improvement

2013-04-08
2013-01-1750
With the current state of ever rising fuel prices and unavailability of affordable alternate technologies, significant research and development efforts have been invested in recent times towards improving fuel efficiency of vehicles powered with conventional internal combustion engines. To achieve this, a varied approach has been adopted by researchers to cover the entire energy chain including fuel quality, combustion quality, power generation efficiency, down-sizing, power consumption efficiency, etc. Apart from energy generation, distribution and consumption, another domain that has been subjected to significant scrutiny is energy recuperation or recovery. A moving vehicle and a running engine provide a number of opportunities for useful back-recovery and storage of energy. The most significant sources for recuperation are the kinetic energy of the moving vehicle or running engine and to a lesser extent the thermal energy from medium such as exhaust gas.
Technical Paper

3D Simulation Methodology to Predict Passenger Thermal Comfort Inside a Cabin

2021-09-15
2021-28-0132
The vehicle Heating, Ventilation and Air conditioning (HVAC) system is designed to meet both the safety and thermal comfort requirements of the passengers inside the cabin. The thermal comfort requirement, however, is highly subjective and is usually met objectively by carrying out time dependent mapping of parameters like the velocity and temperature at various in-cabin locations. These target parameters are simulated for the vehicle interior for a case of hot soaking and its subsequent cool-down to test the efficacy of the AC system. Typically, AC performance is judged by air temperature at passenger locations, thermal comfort estimation along with time to reach comfortable condition for human. Simulating long transient vehicle cabin for thermal comfort evaluation is computationally expensive and involves complex cabin material modelling.
Technical Paper

Brake Groan Noise Investigation and Optimization Strategies for Passenger Vehicles

2021-09-22
2021-26-0301
Groan is a low frequency noise generated when moderate brake pressure is applied between the surfaces of the brake disc and the brake pad at a low-speed condition. Brake groan is often very intense and can cause large numbers of customer complaints. During a groan noise event, vehicle structure and suspension components are excited by the brake system and result in a violent event that can be heard and felt during brake application. The cause of noise is friction variation of stick-slip phenomenon between friction material and disc. Creep groan is the structure-borne noise that is related to dynamic characteristic of the vehicle. However, it has been mainly improved through friction material modifications in the past. In this paper, transfer path of creep groan noise was analyzed by means TPA and structural countermeasure to creep groan noise was suggested. This paper discusses the approach for prediction and mitigation of brake groan noise for passenger vehicles having disc brakes.
Technical Paper

Evolution of Multi Axis Suspension Test Rig from Reaction Type to Inertial Type

2021-09-22
2021-26-0471
This paper highlights the transition of multi-axis suspension test rig from fixed reacted type to semi-inertial type and the benefits derived thereof in simulation accuracies. The critical influence of ‘Mx’ and ‘Mz’ controls on simulation accuracies has been highlighted. The vital role of ‘Mz’ control in the resonance of wheel pan along ‘Z’ axis and thereof arresting unwanted failures modes in spindle has been duly emphasized. Finally, the role of constraints and boundary conditions on simulation accuracies has been demonstrated by replacing the reaction frame with vehicle body.
Technical Paper

A Simple, Cost Effective, Method of Evaluating Bump Steer and Brake Steer, and Achieving Correlation with ADAMS Analysis

2008-04-14
2008-01-0227
This paper proposes a cost effective method, with simple techniques, to evaluate Bump Steer and Brake Steer on a rigid axle vehicle under dynamic conditions. A relationship between calculated values, measured values and a subjective assessment of the vehicle lateral deviation is established. An array, of inter-relationship of the parameters such as offset of steering arm, draglink length, front spring stiffness, height of spring hanger bracket is done. Percentage of influence of the parameter change on the performance of the vehicle is evaluated and standard statistical analysis is used to arrive at inter-relationship of various parameters and ranking of their influence on lateral deviation of the vehicle under braking is established, there by resulting in reduction in iterative process. The results obtained display a good correlation with ADAMS Analysis to the tune of 90% and are in agreement with subjective assessment.
Technical Paper

Development of IT Enabled System for Data Management to Meet EU Vehicle Recyclability Directives

2010-04-12
2010-01-0276
EU directive 2005/64/EC on type approval of motor vehicles with respect to their Reusability, Recyclability and Recoverability ( RRR ) requires vehicle manufacturers to put in place the necessary arrangements and procedures for Parts, Materials and Weight (PMW ) data collection from full chain of supply. This is required to perform the calculations of recyclability rate and recoverability rate in line with ISO 22628. Commonly practiced data collection methodologies included spreadsheet and use of internationally available IT support system for collection of material data. Data complexity and prohibitive cost for using Internationally available IT Support systems like IMDS (International Material Data System) has led to the in-house development of IT enabled Solution customizing Siemens PLM software product (Team centre Enterprise) and SAP (SRM suite).
Technical Paper

Experiments Planning for Robust Design through CAE

2006-10-31
2006-01-3518
This paper presents a systematic approach for designing an experiment in situations where expensive and time consuming computer simulations are used to evaluate product characteristics. In the presence of many design parameters, the critical step is to find the best possible experimental set up with minimum number of simulations. Usually in such situations, designers use their intuition and experience to carry out a number of simulation runs and choose the design that gives better performance. This intuitive approach can be considerably improved by using statistical methods. “Classical experimental designs” were compared with “space filling designs” in terms of their results and requirements. A typical clutch booster bracket is used as an example to demonstrate the methodology.
Technical Paper

Combustion Mechanical Breakdown: A Comparison of the Multiple Regression Method versus the Coherence Method for a HSDI Diesel Powertrain

2011-01-19
2011-26-0035
In the automotive industry there are now several methodologies available to estimate the Combustion Mechanical Breakdown (CMB) of engine radiated noise. This paper compares the results of two different CMB analysis methodologies (multiple regression vs. coherence) performed on a HSDI diesel powertrain installed in an Engine Noise Test Cell (ENTC) and highlights the specific differences in the way each method defines combustion and mechanical noise.
Technical Paper

Challenges to Meet New Noise Regulations and New Noise Limits for M and N Category Vehicles

2013-01-09
2013-26-0107
New noise regulations, with reduced noise limits, have been proposed by UN-ECE. A new method which aims at representing urban driving of the vehicles more closely on roads is proposed and is considerably different from the existing one (IS 3028:1998). It is more complex; we also found that some of the low powered vehicles can not be tested as per this method. The paper proposes ways of improvement in the test method. The new noise reduction policy options will have a considerable impact on compliance of many categories of vehicles. Technological challenges, before the manufacturers, to meet all performance needs of the vehicle along with the cost of development will be critical to meet the new noise limits in the proposed time frame.
Technical Paper

A Novel Approach for Diagnostics, End of Line and System Performance Checks for Micro Hybrid Battery Management Systems

2014-04-01
2014-01-0291
Micro Hybrid Systems are a premier approach for improving fuel efficiency and reducing emissions, by improving the efficiency of electrical energy generation, storage, distribution and consumption, yet with lower costs associated with development and implementation. However, significant efforts are required while implementing micro hybrid systems, arising out of components like Intelligent Battery Sensor (IBS). IBS provides battery measurements and battery status, and in addition mission critical diagnostic data on a communication line to micro hybrid controller. However, this set of data from IBS is not available instantly after its initialization, as it enters into a lengthy learning phase, where it learns the battery parameters, before it gives the required data on the communication line. This learning period spans from 3 to 8 hours, until the IBS is fully functional and is capable of supporting the system functionalities.
Technical Paper

Derivation of Test Schedule for Clutch Using Road Load Data Analysis and Energy Dissipation as Basis

2018-04-03
2018-01-0404
During every clutch engagement energy is dissipated in clutch assembly because of relative slippage of clutch disc w.r.t. flywheel and pressure plate. Energy dissipated in clutch is governed by many design parameters like driveline configuration of the vehicle vis-a-vis vehicle mass, and operational parameters like road conditions, traffic conditions. Clutch burning failure, which is the major failure mode of clutch assembly, is governed by energy dissipation phenomenon during clutch engagement. Clutch undergoes different duty cycles during usage in city traffic, highways or hilly regions during its lifetime. A test schedule was derived using energy dissipated during every clutch engagement event as a base and using road load data collected on the vehicle. Road load data was collected in different road mix conditions comprised of city traffic, highway, hilly region, rough road for few hundred kilometers.
Technical Paper

An Effort to Build Mathematical Model using Time Series Analysis to Aid Steering Auto-Correction in Heavy Commercial Vehicle during High Speed Braking

2015-09-29
2015-01-2763
Steering pull during high speed braking of heavy commercial vehicles possesses a potential danger to the occupants. Even with negligible wheel-to-wheel brake torque variation, steering pull during the high speed braking has been observed. If the steering pull (i.e. steering rotation) is forcibly held at zero degree during high speed braking, the phenomena called axle twist, wheel turn and shock absorber deflection arise. In this work the data have been collected on the mentioned measures with an intention to develop a mathematical model which uses real time data, coming from feedback mechanism to predict the values of the measures in coming moments in order to aid steering system to ‘auto-correct’. Driven by the intention, ‘Time Series Analysis’, a well-known statistical methodology, has been explored to see how suitable it is in building the kind of model.
Technical Paper

Adhesive Failure Prediction in Crash Simulations

2019-01-09
2019-26-0297
Structural adhesive is a good alternative to provide required strength at joinery of similar and dissimilar materials. Adhesive joinery plays a critical role to maintain structural integrity during vehicle crash scenario. Robust adhesive failure definitions are critical for accurate predictions of structural performance in crash Computer Aided Engineering (CAE) simulations. In this paper, structural adhesive material characterization challenges like comprehensive In-house testing and CAE correlation aspects are discussed. Considering the crash loading complexity, test plan is devised for identification of strength and failure characteristics at 0°, 45°, 75°, 90°, and Peel loading conditions. Coupon level test samples were prepared with high temperature curing of structural adhesive along with metal panels. Test fixtures were prepared to carryout testing using Instron VHS machine under quasi-static and dynamic loading.
Technical Paper

Utilizing Computed Tomography for Cell Characterization, Quality Assessment, and Failure Analysis

2024-01-16
2024-26-0189
Computed Tomography (CT) has become a potent instrument for non-invasive assessment of battery cell integrity, providing detailed insights into their internal structure. The present study explores the capabilities and advantages of employing CT for cell characterization through a systematic evaluation from various parameters. The evaluation results will be based on real-world experiments conducted on a standard battery cell, assessing the CT system’s ability to provide precise internal measurements, detect defects, and ensure the overall integrity of the cell. We outline a comprehensive framework that includes criteria such as system specifications, image quality, software capabilities, maintenance, service, and cost-effectiveness.
Technical Paper

Simulation Techniques for Liquid Gasket Sealing Performance Prediction

2024-01-16
2024-26-0267
In the automotive industry, silicon adhesive has become increasingly popular due to its benefits in ease of assembly and cost savings associated with material and manufacturing processes. To meet the imperative of minimizing both time and expenses during the project's development phase, it becomes essential to select the appropriate gasket material and an optimal flange design at the outset of the design process. In order to achieve stringent emission standards such as Real Driving Emission (RDE) and Corporate Average Fuel Economy (CAFE) norms, a better sealing performance is an essential parameter. Various types of liquid gaskets such as silicon rubber based Room Temperature Vulcanizing (RTV) sealants and thermoset plastic based Anaerobic sealants are widely used in an Internal Combustion engine. They are commonly used for the components such as oil sump, bedplate, and gearbox housings, etc.
Technical Paper

Fatigue Assessment & Test Correlation of Seam Welded Joints Using Force Based Equivalent Structural Stress Solid Weld Approach

2024-01-16
2024-26-0268
The stress concentration at welded joints and small crack propagation from some pre-existing discontinuities at notched regions control the fatigue life of typical welded structures. There are numerous FEM stress-based weld fatigue assessment approaches available commercially which unify FEM stresses with various fatigue software codes embedded with international weld standards. However, FEM stress-based approaches predict extensively conservative results. Considerable efforts & subjective decision making is required to arrive at desired level of weld life correlation with physical test results, in terms of weld life and failure location. This is majorly because of inconsistency & inaccuracy in capturing the hot spot stress results due to stress singularities occurring at the notched regions owing to the mesh sensitivity, modeling complexity.
Technical Paper

Simulation Methodology Development for Vibration Test of Bus Body Structure Code AIS-153:2018

2024-01-16
2024-26-0249
A bus is integral part of public transportation in both rural and urban areas. It is also used for scheduled transport, tourism, and school transport. Buses are the common mode of transport all over the world. The growth in economy, the electrification of public transport, demand in shared transport, etc., is leading to a surge in the demand for buses and accelerating the overall growth of the bus industry. With the increased number of buses, the issue of safety of passengers and the crew assumes special importance. The comfort of driver and passenger in the vehicle involves the vibration performance and therefore, the structural integrity of buses is critically important. Bus safety act depicts the safety and comfort of bus operations, management of safety risks, continuous improvement in bus safety management, public confidence in the safety of bus transport, appropriate stakeholder involvement and the existence of a safety culture among bus service providers.
Technical Paper

Enhanced Development Process for UPDs – Digital Approach

2024-01-16
2024-26-0239
Underrun Protection devices (UPDs) are specially designed barriers fitted to the front, side, or rear of heavy trucks. In case of accidents, these devices prevent small vehicles such as bikes and passenger cars going underneath and thus minimizing the severity of such accident. Design and strength of UPD is such that it absorbs the impact energy and offers impact resistance to avoid the vehicle under run. Compliance to UPD safety regulations provides stringent requirements in terms of device design, dimensions, and its behavior under impact loading. Since accuracy of Computer Aided Engineering (CAE) predictions have improved, numerical tools like Finite element method (FEM) are extensively used for design, development, optimization, and performance verification with respect to target regulatory performance requirements. For improved accuracy of performance prediction through FEA, correct FE representation of sub-systems is very important.
Technical Paper

“Test Methodology Development for Rig Level Validation of Light Weight Stabilizer Link of EV Bus Suspension”

2024-01-16
2024-26-0357
In the modern and fast growing automotive sector, reliability & durability are two terms of utmost importance along with weight & cost optimization. Therefore it is important to explore new technology which has less weight, low manufacturing cost and better strength. The new technology developed always seek for a quick, cost effective and reliable methodology for its design validation so that any modification can be made by identifying the failures. This paper presents the rig level test methodology to validate and to correlate the CAE derived strain levels, life cycle & failure mode of newly developed light weight stabilizer link for EV Bus suspension
Technical Paper

Tweaking Elastomer by Addition of Nano Silica in Formulation

2024-01-16
2024-26-0197
The art of rubber formulation science always has a scope for fine-tuning with changing the parameters like base polymer grade selection, filler selection, curing system/cross link density, manufacturing methods, and many. Hence forth the filler manufacturer arrived differentiation of the filler already, this paper provides a description of rubber formulation tuning for damped vibration automotive applications. Acicular spiky spherical and hollow spherical nano silica selected as filler. With the thorough knowledge of elastomeric formulation and with doping different new selected silica grades, an optimized DOE was done. New formulation development was focused on isolation characteristics without affecting other necessary properties. The different inputs for finite element calculations was studied with the effects of doping different fillers and also studied the resultant virtual output in damping coefficients.
X