Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

The Impact of new Technologies and Tools on the Vehicle and Engine Development Process

2001-03-05
2001-01-0771
Technological progress opens the door for the development of new tools to be used for the development of vehicles and engines. This offers the opportunity for an optimization of the entire workflow on one hand, and an improvement of single tasks on the other hand. This paper describes the actual status of the development process, describes new directions of tool evolvement and finally gives an outlook into the future. Redline ADAPT-SIM is a tool for driver- and vehicle simulation, which was developed primarily for ECU application, but can also be used for other dynamic testing tasks. The introduction of this tool leads to better controllability and therefore also repeatability of tests.
Technical Paper

Catalyst Aging Method for Future Emissions Standard Requirements

2010-04-12
2010-01-1272
This paper describes an alternative catalyst aging process using a hot gas test stand for thermal aging. The solution presented is characterized by a burner technology that is combined with a combustion enhancement, which allows stoichiometric and rich operating conditions to simulate engine exhaust gases. The resulting efficiency was increased and the operation limits were broadened, compared to combustion engines that are typically used for catalyst aging. The primary modification that enabled this achievement was the recirculation of exhaust gas downstream from catalyst back to the burner. The burner allows the running simplified dynamic durability cycles, which are the standard bench cycle that is defined by the legislation as alternative aging procedure and the fuel shut-off simulation cycle ZDAKW. The hot gas test stand approach has been compared to the conventional engine test bench method.
Technical Paper

Acoustics of Hybrid Vehicles

2010-06-09
2010-01-1402
The technology used in hybrid vehicle concepts is significantly different from conventional vehicle technology with consequences also for the noise and vibration behavior. In conventional vehicles, certain noise phenomena are masked by the engine noise. In situations where the combustion engine is turned off in hybrid vehicle concepts, these noise components can become dominant and annoying. In hybrid concepts, the driving condition is often decoupled from the operation state of the combustion engine, which leads to unusual and unexpected acoustical behavior. New acoustic phenomena such as magnetic noise due to recuperation occur, caused by new components and driving conditions. The analysis of this recuperation noise by means of interior noise simulation shows, that it is not only induced by the powertrain radiation but also by the noise path via the powertrain mounts. The additional degrees of freedom of the hybrid drive train can also be used to improve the vibrational behavior.
X