Refine Your Search

Topic

Author

Search Results

Technical Paper

A study on the effects of compression ratio, engine speed and equivalence ratio on HCCI combustion of DME

2007-07-23
2007-01-1860
An experimental study has been carried out on the homogeneous charge compression ignition (HCCI) combustion of Dimethyl Ether (DME). The study was performed as a parameter variation of engine speed and compression ratio on excess air ratios of approximately 2.5, 3 and 4. The compression ratio was adjusted in steps to find suitable regions of operation, and the effect of engine speed was studied at 1000, 2000 and 3000 RPM. It was found that leaner excess air ratios require higher compression ratios to achieve satisfactory combustion. Engine speed also affects operation significantly.
Technical Paper

Steady State Investigations of DPF Soot Burn Rates and DPF Modeling

2011-09-11
2011-24-0181
This work presents the experimental investigation of Diesel Particulate Filter (DPF) regeneration and a calibration procedure of a 1D DPF simulation model based on the commercial software AVL BOOST v. 5.1. Model constants and parameters are fitted on the basis of a number of steady state DPF experiments where the DPF is exposed to real engine exhaust gas in a test bed. The DPF is a silicon carbide filter of the wall flow type without a catalytic coating. A key task concerning the DPF model calibration is to perform accurate DPF experiments because measured gas concentrations, temperatures and soot mass concentrations are used as model boundary conditions. An in-house-developed raw exhaust gas sampling technique is used to measure the soot concentration upstream the DPF which is also needed to find the DPF soot burn rate.
Technical Paper

Thermal Loading in SiC Particle Filters

1995-02-01
950151
Silicon Carbide (SiC) has been shown to have a high melting/decomposition temperature, good mechanical strength, and high thermal conductivity, which make it well suited for use as a material for diesel particulate filters. The high thermal conductivity of the material tends to reduce the temperature gradients and maximum temperature which arise during regeneration. The purpose of this paper is to experimentally investigate the thermal loading which arise under regenerations of varying severity. An experimental study is presented, in which regenerations of varying severity are conducted for uncoated SiC and Cordierite filters. The severity is varied through changes in the particle loading on the filters and by changing the flow conditions during the regeneration process itself. Temperature distributions throughout the filters are measured during these regeneration.
Technical Paper

Performance and Emissions of a 0.273 Liter Direct Injection Diesel Engine Fuelled with Neat Dimethyl Ether

1995-02-01
950064
An experimental study is presented in which the use of neat dimethyl ether (DME) in a small non-turbo-charged diesel engine is demonstrated. It was found that with only minor fuel system modifications, DME gave very satisfactory combustion, performance and emissions. Engine operation with thermal efficiency equivalent to diesel fuel was achieved with much lower NOx emissions and with extremely low smoke and less engine noise. Additional NO, reductions were obtained by the use of EGR, without visible smoke and without deterioration in thermal efficiency, A limited durability study showed that the diesel fuel injection pump could operate on DME for more than 500 hours. A comparison of pure and technical grade DME was conducted.
Technical Paper

The Analysis of Mean Value SI Engine Models

1992-02-01
920682
Mean value engine models (MVEMs) seek to predict dynamically the mean values of important SI engine variables such as the crank shaft speed, the manifold pressure and the theoretical air/fuel ratio (lambda). Previous work also shows that such models can be made quite accurate, both for stationary and transient operating modes. Because these models can be made mathematically simple and compact, they are also tractable for direct mathematical and physical analysis. In this paper an analysis of a mean value engine model is carried out which reveals the underlying structure of the problems which face engine control system designers. In particular it is shown that an SI engine is extremely nonlinear and time dependent. Because of this, conventional control strategies using conventional sensors cannot be made to operate correctly in the transient regime. An “ideal” nonlinear compensator is also described for the fueling dynamics which works over a wide operating range.
Technical Paper

A 50cc Two-Stroke DI Compression Ignition Engine Fuelled by DME

2008-06-23
2008-01-1535
The low auto-ignition temperature, rapid evaporation and high cetane number of dimethyl ether (DME) enables the use of low-pressure direct injection in compression ignition engines, thus potentially bringing the cost of the injection system down. This in turn holds the promise of bringing CI efficiency to even the smallest engines. A 50cc crankcase scavenged two-stroke CI engine was built based on moped parts. The major alterations were a new cylinder head and a 100 bar DI system using a GDI-type injector. Power is limited by carbon monoxide emission but smoke-free operation and NOx < 200ppm is achieved at all points of operation.
Technical Paper

Novel base metal-palladium catalytic diesel filter coating with NO2 reducing properties

2007-07-23
2007-01-1921
A novel base metal-palladium catalytic coating was applied on commercial silicon carbide wall flow diesel filters and tested in an engine test bench. This catalytic coating limits the NO2 formation and even removes NO2 within a wide temperature range. Soot combustion, HC conversion and CO conversion properties are comparable to current platinum-based coatings, but at a lower cost. This paper compares the results from engine bench tests of present commercial solutions as regards NO2-, HC-, CO-removal and soot combustion with the novel coating. Furthermore, emission test results from base metal-palladium coated diesel particulate filters installed on operating taxis and related test cycle data are presented. A significant reduction in NO2 emission compared to present technology is measured.
Technical Paper

Dimethyl Ether (DME) - Assessment of Viscosity Using the New Volatile Fuel Viscometer (VFVM)

2001-05-07
2001-01-2013
This paper describes the development and test of a viscometer capable of handling dimethyl Ether (DME) and other volatile fuels. DME has excellent combustion characteristics in diesel engines but the injection equipment can break down prematurely due to extensive wear when handling this fuel. It was established, in earlier work, that the wear in the pumps is substantial even if the lubricity of DME is raised to a believed acceptable level using anti-wear additives. An influence of the viscosity on the wear in the pumps was suspected. The problem, up to now, was that the viscosity of DME has only been estimated or calculated but never actually measured. In the present work a volatile fuel viscometer (VFVM) was developed. It is of the capillary type and it was designed to handle DME, neat or additised. The kinematic and dynamic viscosities of pure DME were measured at 0.185 cSt and 0.122 cP at 25 °C respectively.
Technical Paper

Reduction of UHC-emissions from Natural Gas Fired SI-engine - Production and Application of Steam Reformed Natural Gas

2000-10-16
2000-01-2823
Application of a known hydrogen containing fuel called reformed natural gas (RNG) has been realized in a stationary combustion engine with success. The aim for this is to reduce unburned hydrogen emissions (UHC) from the engine together with an increase in efficiency. The fuel contains mainly methane, hydrogen and minor amounts of carbon dioxide. A small-scale unit for onboard production of RNG has been built in order to avoid the dependence of artificial supplementation of hydrogen. The production is carried out through means of steam reforming of natural gas. The RNG-unit together with theoretical considerations for estimating fuel composition and issues of caution are described. Theoretical studies show a potential for varying the hydrogen content between 8 and 30 vol%. Studies also show potential for remarkable increases in the methane number relative to that of the natural gas. A test engine has been fueled with RNG.
Technical Paper

Towards Robust H-infinity Control of an SI Engine's Air/Fuel Ratio

1999-03-01
1999-01-0854
Long term stoichiometric Air/Fuel Ratio (AFR) control of an SI engine is at the present mainly maintained by table mapping of the engine's fresh air intake as a function of the engine operating point. In order to reduce a stationary error in the AFR to zero the table based control normally works in conjunction with a PI feedback from a HEGO sensor. The effective bandwidth of this feedback loop is quite small and seldom exceeds 2 Hz. This is altogether too small for accurate transient AFR control. This paper presents a new λ (normalized Air/Fuel Ratio) control methodology (H∞ control) which has a somewhat larger bandwidth and can guarantee robustness with respect to selected engine variable and parameter variations.
Technical Paper

Mean Value Engine Modelling of an SI Engine with EGR

1999-03-01
1999-01-0909
Mean Value Engine Models (MVEMs) are simplified, dynamic engine models which are physically based. Such models are useful for control studies, for engine control system analysis and for model based engine control systems. Very few published MVEMs have included the effects of Exhaust Gas Recirculation (EGR). The purpose of this paper is to present a modified MVEM which includes EGR in a physical way. It has been tested using newly developed, very fast manifold pressure, manifold temperature, port and EGR mass flow sensors. Reasonable agreement has been obtained on an experiemental engine, mounted on a dynamometer.
Technical Paper

Mutagenic Activity of the Soluble Organic Fraction of Exhaust Gas Particulate from a Direct Injection Diesel Engine

1996-10-01
961977
The main purpose of this study was to investigate the influence of diesel engine conditions on the mutagenic activity of the exhaust. Special emphasis was put on investigation of the influence of nitrogen oxides content. Experiments with a diesel engine have been carried out in the laboratory and the emissions of carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOx) and particulate matter (PM) have been measured at different engine conditions. The particulate matter was extracted in order to obtain the soluble organic fraction (SOF), and this fraction was analyzed for mutagenic activity in the Salmonella/microsome assay (AMES test). It was found that the mutagenic activity evidently depended on the PAH content (PAH = Polycyclic Aromatic Hydrocarbons) of the exhaust gas rather than the NOx content. However, the percentage of the direct mutagenic activity of the total mutagenic activity increased as the NOx content in the exhaust gas increased.
Technical Paper

Mean Value Modelling of Turbocharged Spark Ignition Engines

1998-02-23
980784
An important paradigm for the modelling of naturally aspirated (NA) spark ignition (SI) engines for control purposes is the Mean Value Engine Model (MVEM). Such models have a time resolution which is just sufficient to capture the main details of the dynamic performance of NA SI engines but not the cycle-by-cycle behavior. In principle such models are also physically based, are very compact in a mathematical sense but nevertheless can have reasonable prediction accuracy. Presently no MVEMs have been constructed for intercooled turbocharged SI engines because their complexity confounds the simple physical understanding and description of such engines. This paper presents a newly constructed MVEM for a turbocharged SI engine which contains the details of the compressor and turbine characteristics in a compact way. The model has been tested against the responses of an experimental engine and has reasonable accuracy for realistic operating scenarios.
Technical Paper

Wideband SI Engine Lambda Control

1998-02-23
981065
Long term control of the AFR (Air/Fuel Ratio) of spark ignition engines is currently accomplished with a selvoscillating PI control loop. Because of the intake/exhaust time delay, the oscillation frequency and hence bandwidth of this loop is small. This paper describes a new approach to the design of this control loop using a novel observer system. In this way the bandwidth of this important loop is increased by a factor of 2 - 6 times, leading to more accurate overall AFR control. Moreover the observer approach is so robust and allows such feedback levels that it reduces significantly the accuracy required in the calibration of the base fuel control system with which it is be used. It can be used with either conventional- or advanced observer based- base fuel strategies.
Technical Paper

Emissions from Diesel and Gasoline Vehicles Fuelled by Fischer-Tropsch Fuels and Similar Fuels

2007-10-29
2007-01-4008
The described investigation was carried out under the umbrella of IEA Advanced Motor Fuels Agreement. The purpose was to evaluate the emissions of carbon monoxide (CO), unburned hydrocarbons (HC), nitrogen oxides (NOx), particulate matter (PM) and polycyclic aromatic hydrocarbons (PAH) from vehicles fuelled by Fischer Tropsch (FT) based diesel and gasoline fuel, compared to the emissions from ordinary diesel and gasoline. The comparison for diesel fuels was based on a literature review, whereas the gasoline comparison had to be based on our own experiments, since almost no references were found in this field. In this context measurement according to the Federal Test Procedure (FTP) and the New European Driving Cycle (NEDC) were carried out on a chassis dynamometer with a directly injected gasoline vehicle. Experiments were carried out with a reference fuel, a fuel based 70% on FT and an alkylate fuel (Aspen), which was taken to be the ultimate formula of FT gasoline.
Technical Paper

SiC as a Substrate for Diesel Particulate Filters

1993-09-01
932495
Many of the materials which have been developed for use as particle filters in the exhaust of diesel engines have characteristics which give rise to significant problems in practical use. Due to its special characteristics, it is shown that SiC is very well suited for use as the base material for particulate filters. The physical and thermal properties of porous SiC substrate material as applied to diesel particulate filters have been determined and are presented. Experimental results from several types of filter regeneration processes in exhaust gas systems confirm the improvements in the area of thermal load and reduction in temperature level during regeneration. The reduction in temperature during regeneration is shown to be consistent with the high thermal conductivity of SiC.
Technical Paper

Modelling of the Intake Manifold Filling Dynamics

1996-02-01
960037
Mean Value Engine Models (MVEMs) are dynamic models which describe dynamic engine variable (or state) responses as mean rather than instantaneous values on time scales slightly longer than an engine event. Such engine variables are the independent variables in nonlinear differential (or state) equations which can be quite compact but nevertheless quite accurate. One of the most important of the differential equations for a spark ignition (SI) engine is the intake manifold filling (often manifold pressure) state equation. This equation is commonly used to estimate the air mass flow to an SI engine during fast throttle angle transients to insure proper engine fueling. The purpose of this paper is to derive a modified manifold pressure state equation which is simpler and more physical than those currently found in the literature. This new formulation makes it easier to calibrate a MVEM for different engines and provides new insights into dynamic SI engine operation.
Technical Paper

Advanced Nonlinear Engine Idle Speed Control Systems

1994-03-01
940974
One of the most important operating modes for SI engines is in the idle speed region. This is because SI engines spend a large part of their time operating in this mode. Moreover, a large measure of operator satisfaction is dependent on an engine operating smoothly and reliably in and around idle. In particular the operator expects that the idle speed will remain constant in spite of the engine loads due to power steering pumps and air conditioning compressors. In the idle speed region an SI engine is thought to be quite nonlinear because the engine loading can be quite significant, thus forcing the engine to be driven through a reasonably large portion of its lower operating range. Many of the earlier studies of idle speed control systems have dealt with linearized models which in principle have limited validity for the problem at hand. In order to improve this situation, it is necessary to deal with the more general nonlinear control problem.
Technical Paper

Flow Characteristics of SiC Diesel Particulate Filter Materials

1994-03-01
940236
Recent studies have shown that SiC provides substantial advantages for use as the material for wall flow diesel particulate filters. In addition to very advantageous thermal properties, it has been shown that SiC based filter material has higher permeability than Cordierite. This paper presents a comparison of the basic flow characteristics of SiC based and Cordierite based wall flow filter material, expressed in terms of parameters which are basic materials properties that are independent of filter geometry. In addition, the flow characteristics of the particulate matter collected on the filter during engine operation are presented. The results show that the advantageous flow characteristics observed with the basic filter material are retained for loaded filters, up to very high loadings.
Technical Paper

A New Family of Nonlinear Observers for SI Engine Air/Fuel Ratio Control

1997-02-24
970615
In general most engine models for control applications have been constructed using regressions fitting and measured engine data. Such techniques have also been used to model the dynamic performance of engines. Unfortunately regression equation models are very complex and do not show directly the physical reality from which they emerge. This has for example made it impossible to write down explicitly the dymanic equations for, for example, the air exchange process in an SI engine in any form other than as the manifold pressure state equation. In recent a publication a Mean Value Engine Model (MVEM) has been constructed for an SI engine which is physically based and which has a simple physical form which can be immediately understood and manipulated.
X