Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

System Engineering and Integration of Controls for Advanced Life Support

2006-07-17
2006-01-2121
The Advanced Integration Matrix (AIM) project at the Johnson Space Center (JSC) was chartered to study and solve systems-level integration issues for exploration missions. One of the first issues identified was an inability to conduct trade studies on control system architectures due to the absence of mature evaluation criteria. Such architectures are necessary to enable integration of regenerative life support systems. A team was formed to address issues concerning software and hardware architectures and system controls.. The team has investigated what is required to integrate controls for the types of non-linear dynamic systems encountered in advanced life support. To this end, a water processing bioreactor testbed is being developed which will enable prototyping and testing of integration strategies and technologies.
Technical Paper

Modeling and Control Studies of an Integrated Biological Wastewater Treatment System

2005-07-11
2005-01-2963
From 1997 to 2001, the third author worked with a team of engineers at JSC to develop the requirements and basic design for the Bioregenerative Planetary Life Support Systems Test Complex, or BIO-Plex. Under the Advanced Integration Matrix (AIM) Project, this earlier effort is extended to an investigation of methods and approaches for Advanced Systems Integration and Control. The intent is to understand and validate the use of software as an integrating function for complex heterogeneous systems, particularly for Advanced Life Support (ALS), in the context of support of mission operations. Preliminary investigations undertaken in the summer of 2004 indicate that integration of controls for the type of dynamic, non-linear, closed-loop biological systems under investigation for ALS systems require a different systems engineering approach than that required for traditional avionics systems.
X