Refine Your Search

Topic

Author

Search Results

Technical Paper

Expanded Accommodation Technique with Application to Maintenance Environment

2011-04-12
2011-01-0521
This paper presents a PC based mathematical and rapid prototyping technique for anthropometric accommodation in a maintenance environment using the principle of simulation based design. The developed technique is capable of analyzing anthropometric data using multivariate (Principal component Analysis) approach to describe the body size variability of any given population. A number of body size representative cases are established which, when used properly within the constraints of the maintenance environments, will ensure the accommodation of a desired percentage of a population. This technique evaluates the percentage accommodation of a given population for the environment using the specific manikin cases as boundary conditions. In the case where any member of a maintenance crew cannot be accommodated, the technique has the capability of informing the designer of the environment why the member(s) is/are not accommodated.
Technical Paper

Ejection Seat Cushions Static Evaluation for Three Different Installation Rail Angles

2011-04-12
2011-01-0806
Jet fighter missions have been known to last extended period of time. The need for a comfortable and safe seat has become paramount considering that fact that uncomfortable seats can lead to numerous health issues. Several health effects like numbness, pressure sore, low back pain, and vein thrombosis have been associated with protracted sitting. The cushion, and of late the installation rail angle are the only components of the ejection seat system that can be modified to reduce these adverse effects. A comprehensive static comfort evaluation study for ejection seats was conducted. It provides comparison between a variety of operational and prototype cushions (baseline cushion, honeycomb and air-cushion) and three different installation rail angles (14°, 18°, and 22°). Three operational cockpit environment mockups with adjustable installation rail angle were built. Ten volunteer subjects, six females and four males, ages 19 to 35, participated in the seat comfort evaluation.
Technical Paper

International Space Station (ISS) Major Constituent Analyzer (MCA) On-Orbit Performance

2006-07-17
2006-01-2092
This paper summarizes the first 5 plus years of on-orbit operation for the Major Constituent Analyzer (MCA). The MCA is an essential part of the International Space Station (ISS) Environmental Control and Life Support System (ECLSS). The MCA is a mass spectrometer instrument in the US Destiny Laboratory Module of the International Space Station. The MCA provides critical monitoring of six major atmospheric constituents (nitrogen (N2), oxygen (O2), hydrogen (H2), carbon dioxide (CO2), methane (CH4) and water vapor (H2O)) sampled continuously and automatically in all United States On-Orbit Segment (USOS) modules via the Sample Distribution System (SDS). Sample lines have been routed throughout the U.S. modules with valves to facilitate software-automated sequential sampling of the atmosphere in the various modules.
Technical Paper

Integrated Status of Regenerative Environmental Control and Life Support System (ECLSS) Functions into the International Space Station (ISS) U.S. Laboratory Element

2006-07-17
2006-01-2058
Currently the International Space Station (ISS) has limited Regenerative Environmental Control and Life Support System (ECLSS) capability. This capability only consists of condensate water recovery that is resident in the Russian Segment (RS). The ISS program planned to have the United States (U.S.) Regenerative ECLSS located in the Node 3 element, however recently the program directed earlier implementation of the U.S. Regenerative ECLSS into the U.S. laboratory element. This configuration change is in the process of being implemented to allow for earlier integration of the three racks containing urine processing, water processing, and oxygen generation regenerative functions into the U.S. Laboratory. The Regenerative ECLSS functions were originally planned for operation aboard ISS after the launch and attachment of the Node 3 element in early 2010.
Technical Paper

International Space Station Environmental Control and Life Support System Status: 2004 - 2005

2005-07-11
2005-01-2777
The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S. ECLS system activities over the past year, covering the period of time between March 2004 and February 2005. The ISS continued permanent crew operations, with the start of Phase 3 of the ISS Assembly Sequence. Work continued on the Phase 3 pressurized elements and the continued manufacturing and testing of the regenerative ECLS equipment.
Technical Paper

Modification of the USOS to Support Installation and Activation of the Node 3 Element

2009-07-12
2009-01-2416
The International Space Station (ISS) program is nearing an assembly complete configuration with the addition of the final resource node module in early 2010. The Node 3 module will provide critical functionality in support of permanent long duration crews aboard ISS. The new module will permanently house the regenerative Environment Control and Life Support Systems (ECLSS) and will also provide important habitability functions such as waste management and exercise facilities. The ISS program has selected the Port side of the Node 1 “Unity” module as the permanent location for Node 3 which will necessitate architecture changes to provide the required interfaces. The USOS ECLSS fluid and ventilation systems, Internal Thermal Control Systems, and Avionics Systems require significant modifications in order to support Node 3 interfaces at the Node 1 Port location since it was not initially designed for that configuration.
Technical Paper

Modeling of Commercial Airplanes Service Request Process Flows

2009-11-10
2009-01-3199
The repairing of commercial aircraft is a complex task. Service engineers at Boeing's Commercial Aviation Services group specialize in providing crucial repair information and technical support for its many customers. This paper details factors that influence Boeing's response time to service requests and how to improve it. Information pertaining to over 5000 service requests from 2008 and 2009 was collected. From analysis of this data set, important findings were discovered. One major finding is that between 6 and 8 percent of service requests are late because time/date stamps used in reports were created in a different time zone.
Journal Article

Characterization of the Tau Parallel Kinematic Machine for Aerospace Application

2009-11-10
2009-01-3222
A consortium of interested parties has conducted an experimental characterization of two Tau parallel kinematic machines which were built as a part of the EU-funded project, SMErobot1. Characteristics such as machine stiffness, work envelope, repeatability and accuracy were considered. This paper will present a brief history of the Tau parallel machine, the results of this testing and some comment on prospective application to the aerospace industry.
Journal Article

Role of Power Distribution System Tests in Final Assembly of a Military Derivative Airplane

2009-11-10
2009-01-3121
Boeing has contracts for military application of twin engine airplanes generically identified in this paper as the MX airplane. Unlike previous derivatives, the MX airplanes are produced with a streamlined manufacturing process to improve cost and schedule performance. The final assembly of each MX airplane includes a series of integration tests, called factory functional tests (FFTs), which are modified from those of typical commercial versions and verify correctness of equipment installation and basic functionalities. Two airplanes have been through the production line resulting in a number of FFT lessons learned. Addressed are the power distribution lessons learned: 1) the expanded coverage of the basic automated power-on generation system test, 2) the need for a manual wire continuity test, 3) salient features of the power distribution tests, and 4) keys to make first pass power distribution test smooth and successful.
Journal Article

Computational Fluid Dynamics Analysis for the Waste and Hygiene Compartment in the International Space Station

2008-06-29
2008-01-2057
Computational Fluid Dynamics airflow models for the Waste and Hygiene Compartment (WHC) in the U.S. Laboratory module and Node 3 were developed and examined. The International Space Station (ISS) currently provides human waste collection and hygiene facilities in the Russian Segment Service Module (SM) which supports a three person crew. An additional set of Russian hardware, known as the system, is planned for the United States Operational Segment (USOS) to support expansion of the crew to six persons. Integration of the Russian system into the USOS incorporates direct Environmental Control and Life Support System (ECLSS) interfaces to allow more autonomous operation. A preliminary design concept was used to create a geometry model to evaluate the air interaction with the module cabin at varied locations and performance of the avionics fan placed in WHC. The Russian and the privacy protection bump-outs (Kabin) were included into the present modeling.
Technical Paper

ISS IATCS Coolant Loop Biocide Implementation

2008-06-29
2008-01-2159
The proliferation and growth of microorganisms in the Internal Active Thermal Control System (IATCS) aboard the International Space Station (ISS) has been of significant concern since 2001. Initial testing and assessments of biocides to determine bacterial disinfection capability, material compatibility, stability (rate of oxidative degradation and identification of degradation products), solubility, application methodology, impact on coolant toxicity hazard level, and impact on environmental control and life support systems identified a prioritized list of acceptable biocidal agents including glutaraldehyde, ortho-phthalaldehyde (OPA), and methyl isothiazolone. Glutaraldehyde at greater than 25 ppm was eliminated due to NASA concerns with safety and toxicity and methyl isothiazolone was eliminated from further consideration due to ineffectiveness against biofilms and toxicity at higher concentrations.
Journal Article

International Space Station USOS Waste and Hygiene Compartment Development

2008-06-29
2008-01-2137
The International Space Station (ISS) currently provides human waste collection and hygiene facilities in the Russian Segment Service Module (SM) which supports a three person crew. An additional set of Russian hardware, known as the АСУ system, is planned for the United States Operational Segment (USOS) to support expansion of the crew to six persons. Integration of the Russian АСУ system into the USOS incorporates direct Environmental Control and Life Support System (ECLSS) interfaces to allow more autonomous operation as well as maximized water recovery. An interface has been added to provide water directly to the system for flush purposes as well as a urine delivery interface which will result in less crew time for system maintenance. The direct urine interface will be used to recover water within the urine processing system.
Journal Article

International Space Station (ISS) Major Constituent Analyzer (MCA) On-Orbit Performance

2008-06-29
2008-01-1971
This paper summarizes the first seven plus years of on-orbit operation for the Major Constituent Analyzer (MCA). The MCA is an essential part of the International Space Station (ISS) Environmental Control and Life Support System (ECLSS). The MCA is a mass spectrometer instrument in the US Destiny Laboratory Module, which provides critical monitoring of six major atmospheric constituents (nitrogen (N2), oxygen (O2), hydrogen (H2), carbon dioxide (CO2), methane (CH4), and water vapor (H2O)). These gases are sampled continuously and automatically in all United States On Orbit Segment (USOS) modules via the ISS Sample Delivery System (SDS). Continuous readout of the partial pressures of these gases is critical to verifying safe operation of the Atmosphere Re-vitalization (AR) system, Atmosphere Control System (ACS), and crew safety for Airlock Extravehicular Activity (EVA) preparation.
Technical Paper

Resupply of High Pressure Oxygen and Nitrogen Tanks for Extra-Atmospheric Station and Bases

2007-07-09
2007-01-3179
The Shuttle retirement in 2010 will force the ISS program to reconsider how to supply the Station with nitrogen and oxygen for six to ten more years beyond 2010. The major options for post-Shuttle retirement resupply are resupply via transfer vehicle, the use of small Intervehicular Activity (IVA) high pressure tanks, “stockpile” enough gas to support International Space Station (ISS) through end of life, or generate the necessary gases onboard the Station. The method chosen to sustain the ISS will serve as a building block for producing new minimally dependent environmental control and life support systems for future manned missions to the Moon, Mars and beyond.
Technical Paper

International Space Station Environmental Control and Life Support System Status: 2003 - 2004

2004-07-19
2004-01-2382
The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S. ECLS system activities over the past year, covering the period of time between April 2003 and March 2004. The ISS continued permanent crew operations, with the start of Phase 3 of the ISS Assembly Sequence. Work continued on the Phase 3 pressurized elements and the continued manufacturing and testing of the regenerative ECLS equipment.
Technical Paper

Human Swept Volumes

2004-06-15
2004-01-2190
The Human Swept Volume (HSV) software described here is an interactive tool that allows users to position and animate articulated human models and then generate tessellated swept volume solids. Inverse kinematics and keyframe interpolation are used to define motion sequences, and a voxel-based method is used to create swept volume solid models. The software has been designed to accept various human anthropometry models, which can be imported from other CAD tools. For our initial implementation, we defined several human models based on dimensions from CAESAR/SAE anthropometric data. A case study is described in which the swept volume software was used as a part of a human space occupancy analysis. Results show the advantages of using complete swept volumes for objective measurement comparisons.
Technical Paper

International Space Station Environmental Control And Life Support System Status: 2001-2002

2002-07-15
2002-01-2494
The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S. ECLS system activities over the past year, covering the period of time between May 2001 and April 2002. The ISS continued permanent crew operations, with Phase 2 completion accomplished during this period. Work continued on the Phase 3 elements with Node 3 proceeding toward a final design review and the regenerative ECLS equipment proceeding into manufacturing.
Technical Paper

Food Service and Food System Logistics at the South Pole: Lessons for a Lunar/Martian Planetary Surface Mission

2003-07-07
2003-01-2365
Three distinct food system paradigms have been envisioned for long-term space missions. The Skylab, Mir and ISS food systems were based on single-serving prepackaged foods, ready to rehydrate and heat. Bioregenerative food systems, derived from crops grown and processed at the planetary station, have been studied at JSC and KSC. The US Antarctic Program’s Amundsen-Scott South Pole Base uses the third paradigm: bulk packaged food ingredients delivered once a year and used to prepare meals on the station. The packaged food ingredients are supplemented with limited amounts of fresh foods received occasionally during the Antarctic summer, trace amounts of herb and salad crops from the hydroponic garden, and some prepackaged ready to eat foods, so the Pole system is actually a hybrid system; however, it is worth studying as a bulk packaged food system because of the preponderance of bulk packaged food ingredients used.
Technical Paper

International Space Station Bacteria Filter Element Post-flight Testing and Service Life Prediction

2003-07-07
2003-01-2490
The International Space Station (ISS) uses high efficiency particulate air (HEPA) filters to remove particulate matter from the cabin atmosphere. Known as Bacteria Filter Elements (BFEs), there are 13 elements deployed on board the ISS's U.S. Segment. The pre-flight service life prediction of 1 year for the BFEs is based upon performance engineering analysis of data collected during developmental testing that used a synthetic dust challenge. While this challenge is considered reasonable and conservative from a design perspective, an understanding of the actual filter loading is required to best manage the critical ISS Program resources. Thus testing was conducted on BFEs returned from the ISS to refine the service life prediction. Results from this testing and implications to ISS resource management are discussed. Recommendations for realizing significant savings to the ISS Program are presented.
Technical Paper

Asssessment of Waste Processing Technologies for 3 Missions

2001-07-09
2001-01-2365
Choosing the best approach to meet waste processing requirements for long duration space missions should be based on objective selection criteria that provide for subsystem operational availability at the lowest mission cost. Suitable criteria would include robustness, safety, and the minimization of mass, volume, power, cooling, crew time, and resupply requirements for the candidate technologies. The best candidate technologies based on data from historical missions and preliminary data from the Solid Waste Processing and Resource Recovery Workshop (SWPRRW) have been evaluated for cost effectiveness in processing crew waste loads as defined by identified waste models. Both PC and biological approaches were considered for each of three missions: the ISS mission, a Mars transit mission, and a “concentrated exploration” mission for the Mars surface. Results of this analysis are consistent for all three missions considered.
X