Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

A Fuzzy Decision-Making System for Automotive Application

1998-02-23
980519
Fault diagnosis for automotive systems is driven by government regulations, vehicle repairability, and customer satisfaction. Several methods have been developed to detect and isolate faults in automotive systems, subsystems and components with special emphasis on those faults that affect the exhaust gas emission levels. Limit checks, model-based, and knowledge-based methods are applied for diagnosing malfunctions in emission control systems. Incipient and partial faults may be hard to detect when using a detection scheme that implements any of the previously mentioned methods individually; the integration of model-based and knowledge-based diagnostic methods may provide a more robust approach. In the present paper, use is made of fuzzy residual evaluation and of a fuzzy expert system to improve the performance of a fault detection method based on a mathematical model of the engine.
Technical Paper

Implementation of an Electric All-Wheel Drive (eAWD) System

2008-04-14
2008-01-0599
This paper presents the implementation and performance of an electric all-wheel drive system on a series-parallel, through-the-road hybrid electric vehicle. Conventional methods of all-wheel drive do not provide a suitable solution for this type of vehicle as the powertrain lacks a mechanical link between the front and rear axles. Moreover, this unique architecture allows the vehicle to be propelled solely by the front, or the rear, wheels during typical operation. Thus, the algorithm presented here manages wheel slip by either the front, or rear wheels when engaging to provide all-wheel drive capability. necessary testing validates the robustness of this Extensive system.
Technical Paper

New Model for Simulating the Dynamics of Pneumatic Heavy Truck Brakes with Integrated Anti-Lock Control

2003-03-03
2003-01-1322
This paper introduces a new nonlinear model for simulating the dynamics of pneumatic-over-mechanical commercial vehicle braking systems. The model employs an effective systems approach to accurately reproduce forcing functions experienced at the hubs of heavy commercial vehicles under braking. The model, which includes an on-off type ABS controller, was developed to accurately simulate the steer, drive, and trailer axle drum (or disc) brakes on modern heavy commercial vehicles. This model includes parameters for the pneumatic brake control and operating systems, a 4s/4m (four sensor, four modulator) ABS controller for the tractor, and a 2s/2m ABS controller for the trailer. The dynamics of the pneumatic control (treadle system) are also modeled. Finally, simulation results are compared to experimental data for a variety of conditions.
X