Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Estimation of the Relative Roles of Belt-Wearing Rate, Crash Speed Change, and Several Occupant Variables in Frontal Impacts for Two Levels of Injury

2019-04-02
2019-01-1219
Driver injury probabilities in real-world frontal crashes were statistically modeled to estimate the relative roles of five variables of topical interest. One variable pertained to behavior (belt-wearing rate), one pertained to crash circumstances (speed change), and three pertained to occupant demographics (sex, age, and body mass index). The attendant analysis was composed of two parts: (1) baseline statistical modeling to help recover the past, and (2) sensitivity analyses to help consider the future. In Part 1, risk functions were generated from statistical analysis of real-world data pertaining to 1998-2014 model-year light passenger cars/trucks in 11-1 o’clock, full-engagement frontal crashes documented in the National Automotive Sampling System (NASS, 1997-2014). The selected data yielded a weighted estimate of 1,269,178 crash-involved drivers.
Technical Paper

Lower-Body Injury Rates in Full-Engagement Frontal Impacts: Field Data and Logistic Models

2006-04-03
2006-01-1666
Lower-body injury data for adults in real-world frontal impacts in the National Automotive Sampling System (NASS) were collected, analyzed, and modeled via statistical methods. Two levels of lower-body injury were considered: maximum serious-to-fatal (MAIS3+) and moderate-to-fatal (MAIS2+). In the analysis, we observed that a substantial fraction of all lower-body injured occupants had no recorded floor/toe pan intrusion: 47% of all MAIS3+ injured occupants; 69% of all MAIS2+ injured occupants. In the statistical modeling, we developed binary logistic regression models to fit the MAIS3+ and MAIS 2+ injury data. The statistically significant variables (p ≤ 0.05) were the speed change of the crash, postcrash floor/toe pan intrusion, level of restraint, occupant age, and occupant gender.
Technical Paper

New Risk Curves for NHTSA’s Brain Injury Criterion (BrIC): Derivations and Assessments

2016-11-07
2016-22-0012
The National Highway Traffic Safety Administration (NHTSA) recently published a Request for Comments regarding a potential upgrade to the US New Car Assessment Program (US NCAP) - a star-rating program pertaining to vehicle crashworthiness. Therein, NHTSA (a) cited two metrics for assessing head risk: Head Injury Criterion (HIC15) and Brain Injury Criterion (BrIC), and (b) proposed to conduct risk assessment via its risk curves for those metrics, but did not prescribe a specific method for applying them. Recent studies, however, have indicated that the NHTSA risk curves for BrIC significantly overstate field-based head injury rates. Therefore, in the present three-part study, a new set of BrIC-based risk curves was derived, an overarching head risk equation involving risk curves for both BrIC and HIC15 was assessed, and some additional candidate-predictor-variable assessments were conducted. Part 1 pertained to the derivation.
X