Refine Your Search

Search Results

Viewing 1 to 9 of 9
Journal Article

The Measurement and Analysis of the Disc/Pad Interface Dynamic Centre of Pressure and Its Influence on Brake Noise

2008-04-14
2008-01-0826
This paper discusses the measurement of the dynamic centre of pressure (CoP) of a brake pad during a normal braking event using a modified 12-piston opposed calliper. The modifications allow the centre of pressure to be controlled both radially and along the length of the pad, inducing a leading or trailing centre of pressure as desired. The technique is unique in its design and implementation. Both the centre of pressures of the inboard and out-board pads are recorded simultaneously with varying pressures and speeds. The results, which include pressure and force maps, show the position of the centre of pressure to vary considerably during a braking event, both radially and axially along the pad. The CoP offset is related to the calliper mounting geometry which is subsequently compared to the effective “spragging angle” and the generation of brake noise.
Technical Paper

Measurement of the Dynamic Center of Pressure of a Brake Pad During a Braking Operation

2006-10-08
2006-01-3208
This paper discusses the analysis and measurement of the dynamic centre of pressure of a brake pad during a normal braking event. The technique is unique in its design and implementation. The process is progressive whereby the interface static measurements are first taken and then dynamic testing is carried out under braking. Two different measurement systems are considered during the analysis with one used to measure the center of pressure. Both the in-board and out-board pads are measured for wear but the piston pad was selected for pressure measurements. Validation of the spragging process is undertaken on both test rigs and vehicle trials. Pad wear measurements complement the collective information. The results show the position of the centre of pressure to vary considerably during a braking event, both radially and axially along the pad.
Technical Paper

An Investigation of Low Frequency Drum Brake Noise

1998-09-20
982250
A test rig which replicates a one quarter vehicle of a rear wheel drive vehicle, including the suspension system, is used to investigate a low frequency noise. The cross beam is included along with the vehicle suspension spring which is loaded against a sprung loaded mechanism which represents the tyre stiffness exactly and supports the brake geometrically as the tyre would. Drive to the drum is from a DC motor through the wheel drive axle. Holographic Interferometry is used to observe the modes of vibration of the drum with mirrors strategically placed to observe additional features such as the backplate, spring pan and cross beam. Initial results show the mode of vibration of the backplate to be of a diametral mode order and to be moving in the direction of drum rotation. Additionally it is seen that the spring pan and cross beam exhibit high amplitudes of vibration.
Technical Paper

A Study of Thermal Judder on a Laboratory Dynamometer

2008-10-12
2008-01-2542
This paper considers a study of the thermo-elastic behaviour of a disc brake during heavy braking. The work is concerned with working towards developing a situation (or design) that provides uniform heating of the disc, and equally important, even dissipation of heat from the disc blade. The approach is through a combination of modelling, on-vehicle testing but mainly laboratory investigations. The experimental work makes use of a purpose built high speed brake dynamometer which incorporates the full vehicle suspension for controlled simulation of the brake and vehicle operating conditions. Extensive instrumentation allows dynamic measurement of brake pressure fluctuations, disc surface temperature and discrete vibration measurements. Disc run-out measurements using non-contacting displacement transducers show the disc taking up varying orders of deformation ranging from first to third order during high speed testing.
Technical Paper

In-Plane Vibration Investigations of a Noisy Twin Calliper Disc Brake

2003-10-19
2003-01-3320
The out-of-plane vibration characteristics of a noisy brake are generally better understood than in-plane characteristics. The fundamental reason for this is that in-plane vibration was not considered a significant effect until recently when technology has allowed the in-plane vibration characteristics to be determined with some degree of confidence. Detailed investigations of the side views of out-of-plane holographic images indicated that the in-plane displacement could be quite significant and possibly larger than the out-of-plane displacement. It was because the fringe pattern could not be attributed solely to out-of-plane displacement that a study of in-plane vibration was initiated. The paper discusses the measurement of both out-of-plane and in-plane vibration of a twin calliper disc brake during noise generation.
Technical Paper

Animations of a Disc Brake Generating Noise

2001-10-28
2001-01-3126
Previous work on generating animations from real disc brake systems generating noise (squeal) has been consolidated and developed. Using the method of double pulsed laser interferometry a series of holograms (typically ten per half cycle) can be recorded from the brake during a cycle of excitation. From these holograms a considerable amount of data can be obtained about the vibration of the disc and pad surfaces. Standard methods from image processing and algorithms developed to investigate hologram fringe lines can be used to generate three-dimensional representations of the surfaces. Furthermore although part of the disc surface and even more of the pad surface are obscured by the calliper, etc., it has been possible to form a reliable numerical reconstruction of the whole disc and pad surfaces partly by using standard mathematical approximation techniques and partly by intelligent extrapolation of the available data.
Technical Paper

An Experimental Investigation of Hot Judder

2001-10-28
2001-01-3135
High speed testing of a brake system using two different callipers and two different discs on a special test rig with a swinging calliper head mounting shows similar results with regard to hot judder. Holographic interferometry is used in an attempt to observe the disc mode shape during judder and although the classical fringe pattern was not obtained for the disc some useful and complementary information was forthcoming. Disc run-out measurements show that the disc takes up a permanent and increasing deformation with a two-diameter mode formation. This deformation is seen to give a brake pressure fluctuation that results in judder - the pressure being detected using a pressure transducer fitted at the calliper and the mechanical judder with an accelerometer mounted on the calliper body. The two signals allow the degree of phase shift to be estimated. A “strobing” effect, resulting from the combination of speed and video recording frequency, shows two hot-spots moving with the disc.
Technical Paper

A Visual Experimental Noise Investigation of a Twin Calliper Disc Brake

2000-10-01
2000-01-2771
A twin calliper brake system is investigated using the whole body visual technique of holographic interferometry. It is shown that the disc mode of vibration has a preferred position where a disc antinode is situated under one calliper and a disc node under the second calliper. The maximum angular space occupied by the pad antinode is, as predicted by the theoretical study of the disc/pad interface geometry, the angle subtended by the pad length. For a four-piston opposed calliper the minimum distance is slightly larger than the piston centers. There is evidence that the disc mode position, in relation to the two callipers, may be antinode/node, node/node or antinode/antinode. With these arrangements an accompanying revised theoretical study of the disc/pad interface geometry predicts two stable conditions are possible - if the callipers are positioned either at an angle between 125° to 130° or 165° to 175°.
Technical Paper

A Proposal to Predict the Noise Frequency of a Disc Brake Based on the Friction Pair Interface Geometry

1999-10-10
1999-01-3403
The mode of vibration of a noisy disc brake is always diametral with a noise frequency marginally less than the free mode of vibration of the disc. Wheel speed does not affect the frequency but if brake pressure is altered then the noise frequency changes accordingly - an increasing pressure resulting in an increasing frequency over a specified range. Such observations have been made of a variety of different disc brake designs from single piston sliding fist type callipers to four piston opposed rigid callipers with it being possible to relate the noise frequency to the free mode of vibration of the disc in all cases. If the characteristics controlling this behaviour can be identified then the same principles and criteria may be used to predict the noise propensity of any brake at the design stage. The paper proposes, and shows, that the preferred frequencies of excitation of any disc brake system may be related directly to the free mode frequency of the disc.
X