Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Multi-Zone DI Diesel Spray Combustion Model for Cycle Simulation Studies of Engine Performance and Emissions

2001-03-05
2001-01-1246
A quasi-dimensional, multi-zone, direct injection (DI) diesel combustion model has been developed and implemented in a full cycle simulation of a turbocharged engine. The combustion model accounts for transient fuel spray evolution, fuel-air mixing, ignition, combustion and NO and soot pollutant formation. In the model, the fuel spray is divided into a number of zones, which are treated as open systems. While mass and energy equations are solved for each zone, a simplified momentum conservation equation is used to calculate the amount of air entrained into each zone. Details of the DI spray, combustion model and its implementation into the cycle simulation of Assanis and Heywood [1] are described in this paper. The model is validated with experimental data obtained in a constant volume chamber and engines. First, predictions of spray penetration and spray angle are validated against measurements in a pressurized constant volume chamber.
Technical Paper

Measurements and Predictions of Steady-State and Transient Stress Distributions in a Diesel Engine Cylinder Head

1999-03-01
1999-01-0973
A combined experimental and analytical approach was followed in this work to study stress distributions and causes of failure in diesel cylinder heads under steady-state and transient operation. Experimental studies were conducted first to measure temperatures, heat fluxes and stresses under a series of steady-state operating conditions. Furthermore, by placing high temperature strain gages within the thermal penetration depth of the cylinder head, the effect of thermal shock loading under rapid transients was studied. A comparison of our steady-state and transient measurements suggests that the steady-state temperature gradients and the level of temperatures are the primary causes of thermal fatigue in cast-iron cylinder heads. Subsequently, a finite element analysis was conducted to predict the detailed steady-state temperature and stress distributions within the cylinder head. A comparison of the predicted steady-state temperatures and stresses compared well with our measurements.
X