Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

The Role of Binocular Information for Distance Perception in Rear-Vision Systems

2001-03-05
2001-01-0322
New developments in the use of two-dimensional displays to supplement driver vision have made it more important to understand the roles that various distance cues play in driver perception of distance in more conventional ways of viewing the road, including direct vision and viewing through rearview mirrors. The current study was designed to investigate the role of binocular distance cues for perception of distance in rearview mirrors. In a field experiment, we obtained data to estimate the importance of binocular cues for distance judgments under conditions representative of real-world traffic. The results indicate that, although binocular cues are potentially available to drivers, these cues probably play little or no role in distance judgments in rearview mirrors in normal driving situations.
Technical Paper

Effects of Impact Velocity on Crush Behavior of Honeycomb Specimens

2004-03-08
2004-01-0245
Effects of impact velocity on the crush behavior of aluminum 5052-H38 honeycomb specimens are investigated by experiments. An impact test machine using pressurized nitrogen was designed to perform dynamic crush tests. A test fixture was designed such that inclined loads can be applied to honeycomb specimens in dynamic crush tests. The results of dynamic crush tests indicate that the effects of impact velocity on the normal and inclined crush strengths are significant. The trends of the inclined crush strengths for specimens with different in-plane orientation angles as functions of impact velocity are very similar to that of the normal crush strength. Experimental results show similar progressive folding mechanisms for honeycomb specimens under pure compressive and inclined loads. Under inclined loads, the inclined stacking patterns were observed. The inclined stacking patterns are due to the asymmetric locations of the horizontal plastic hinge lines.
Technical Paper

Benefits of Applying Adaptive Headlighting to the Current U.S. and European Low-Beam Patterns

2002-03-04
2002-01-0524
This analytical study examined the potential benefits of applying two embodiments of adaptive lighting to the U.S. and European low-beam patterns: curve lighting that involves shifting the beam horizontally into the curve, and motorway lighting that involves shifting the beam vertically upward. The curve lighting simulations paired 240-m radius left and right curves with a horizontal shift of 10°, and 80-m radius curves with a horizontal beam shift of 15°. The motorway lighting simulations involved upward aim shifts of 0.25° and 0.5°. For both curve and motorway lighting, changes in both seeing and glare illuminance were considered. Market-weighted model year 2000 U.S. and European beam patterns were used. We conclude that curve lighting, as simulated here, would substantially improve seeing performance on curves for both types of beams. On right curves (but not on left curves) there would be an increase in disability glare for oncoming traffic.
Technical Paper

Effect of Road Excitations on Driveline Output Torque Measurements

2011-05-17
2011-01-1538
This paper presents the characterization of the random noise in driveline output shaft torque measurements that is commonly induced by road disturbances. To investigate the interaction between the shaft torque and road side excitation, torque signals are measured using a magnetoelastic torque sensor, as well as a conventional strain gauge sensor, under various types of road surfaces and conditions such as unevenness. A generalized de-trending method for producing a stationary random signal is first conducted. Statistical methods, in particular the probability density function and transform technique, are utilized to provide an evident signature for identifying the road excitation effect on the vehicle output shaft torque. Analysis results show how the road surface can act as a disturbance input to the vehicle shaft torque.
Technical Paper

Infrared Night Vision Systems and Driver Needs

2003-03-03
2003-01-0293
Night vision enhancement systems (NVES), which use infrared (IR) cameras, are designed to supplement the visibility provided by standard headlamps. There are two main NVES systems: active, near infrared (NIR) systems, which require an IR source but give a complete picture of the scene in front of the driver, and passive, far infrared (FIR) systems, which do not need an IR source but only enhance relatively warm objects (such as people and animals). There are three main display alternatives: a head-up display (HUD) superimposed on the direct view of the road, a HUD just above the dashboard but separated from the direct view, and a conventional display somewhere in the dashboard. This paper analyzes what a NVES should do to improve night visibility based on night crash statistics, driver vision and visibility conditions in night driving, driver tasks and behavior, and the options offered by various technological approaches. Potential problems with using NVES are also discussed.
Technical Paper

A Research Design to Collect Data for a Second Generation Eyellipse

1975-02-01
750362
Current automotive design practices related to driver visibility are based on static laboratory studies of mostly straight ahead viewing that were conducted by Meldrum and others beginning in 1962. These individual studies have never been replicated either in the lab or in actual driving situations to determine the validity of their procedures. After a thorough review of the literature related to driver eye location and a statistical analysis of previous static eye location data, an experimental design is proposed to determine dynamic eye location distribution characteristics. This design will provide information on: (a) the relationship of static anthropometric measurements to dynamic eye location; (b) the difference between dynamic on-the-road eye location versus static in-the-lab eye location distributions: (c) the effect of different types of vehicle seating package parameters on eye location; and, (d) a validation of previous static eye location studies.
Technical Paper

Experimental Investigation of Plasticized Polyvinylchloride using the Split Hopkinson Pressure Bar Technique

2000-03-06
2000-01-0610
Characterization of materials used in the automotive industry is often done via component testing. A strict regimen of tests is conducted on a component to determine material parameters for numerical simulations of more complicated loading conditions. Separation of material constants and geometrically- or experimentallyinduced effects is difficult with this method of characterization. Well-controlled experiments that determine the material response in basic deformations allow material properties to be determined. In this paper low strain rate and high strain rate experimental responses of dummy skin material (i.e. plasticized polyvinyl chloride) are presented. Details of the experimental procedures used to acquire the data are also included. In addition, a rate-dependent constitutive model for the plasticized material is developed, and its simulated results are compared with low strain rate results.
X