Refine Your Search


Search Results

Technical Paper

Integrated, Feed-Forward Hybrid Electric Vehicle Simulation in SIMULINK and its Use for Power Management Studies

A hybrid electric vehicle simulation tool (HE-VESIM) has been developed at the Automotive Research Center of the University of Michigan to study the fuel economy potential of hybrid military/civilian trucks. In this paper, the fundamental architecture of the feed-forward parallel hybrid-electric vehicle system is described, together with dynamic equations and basic features of sub-system modules. Two vehicle-level power management control algorithms are assessed, a rule-based algorithm, which mainly explores engine efficiency in an intuitive manner, and a dynamic-programming optimization algorithm. Simulation results over the urban driving cycle demonstrate the potential of the selected hybrid system to significantly improve vehicle fuel economy, the improvement being greater when the dynamic-programming power management algorithm is applied.
Technical Paper

A Field Study of Distance Perception with Large-Radius Convex Rearview Mirrors

One of the primary reasons that FMVSS 111 currently requires flat rearview mirrors as original equipment on the driver's side of passenger cars is a concern that convex mirrors might reduce safety by causing drivers to overestimate the distances to following vehicles. Several previous studies of the effects of convex rearview mirrors have indicated that they do cause overestimations of distance, but of much lower magnitude than would be expected based on the mirrors' levels of image minification and the resulting visual angles experienced by drivers. Previous studies have investigated mirrors with radiuses of curvature up to 2000 mm. The present empirical study was designed to investigate the effects of mirrors with larger radiuses (up to 8900 mm). Such results are of interest because of the possible use of large radiuses in some aspheric mirror designs, and because of the information they provide about the basic mechanisms by which convex mirrors affect distance perception.
Technical Paper

Acceptance of Nonplanar Rearview Mirrors by U.S. Drivers

Five different nonplanar mirrors were evaluated as driver-side rearview mirrors in a field test using Ford employees. Two were spherical convex (differing in radius of curvature), and three were aspheric (differing primarily in the proportion of their surfaces over which radius of curvature was variable). Each participant drove for four weeks with one of the nonplanar mirrors. At three times during the test the participants filled out questionnaires concerning their experience with the mirrors. Driver preferences for the experimental mirrors increased moderately between surveys at one week and at four weeks. At four weeks, all five nonplanar mirrors were preferred to the standard flat mirror by at least a small amount. For each of the five mirror designs there was a large range of opinion. Most notably, a small number of people strongly disliked the aspheric design that involved the largest variable-radius area.
Technical Paper

Optimizing Gaseous Fuel-Air Mixing in Direct Injection Engines Using an RNG Based k-ε Model

Direct injection of natural gas under high pressure conditions has emerged as a promising option for improving engine fuel economy and emissions. However, since the gaseous injection technology is new, limited experience exists as to the optimum configuration of the injection system and associated combustion chamber design. The present study uses KIVA-3 based, multidimensional modeling to improve the understanding and assist the optimization of the gaseous injection process. Compared to standard k-ε models, a Renormalization Group Theory (RNG) based k-ε model [1] has been found to be in better agreement with experiments in predicting gaseous penetration histories for both free and confined jet configurations. Hence, this validated RNG model is adopted here to perform computations in realistic engine geometries.
Technical Paper

A Research Design to Collect Data for a Second Generation Eyellipse

Current automotive design practices related to driver visibility are based on static laboratory studies of mostly straight ahead viewing that were conducted by Meldrum and others beginning in 1962. These individual studies have never been replicated either in the lab or in actual driving situations to determine the validity of their procedures. After a thorough review of the literature related to driver eye location and a statistical analysis of previous static eye location data, an experimental design is proposed to determine dynamic eye location distribution characteristics. This design will provide information on: (a) the relationship of static anthropometric measurements to dynamic eye location; (b) the difference between dynamic on-the-road eye location versus static in-the-lab eye location distributions: (c) the effect of different types of vehicle seating package parameters on eye location; and, (d) a validation of previous static eye location studies.
Technical Paper

Slip Resistance Predictions for Various Metal Step Materials, Shoe Soles and Contaminant Conditions

The relationship of slip resistance (or coefficient of friction) to safe climbing system maneuvers on high profile vehicles has become an issue because of its possible connection to falls of drivers. To partially address this issue, coefficients of friction were measured for seven of the more popular fabricated metal step materials. Evaluated on these steps were four types of shoe materials (crepe, leather, ribbed-rubber, and oil-resistant-rubber) and three types of contaminant conditions (dry, wet-water, and diesel fuel). The final factor evaluated was the direction of sole force application. Results showed that COF varied primarily as a function of sole material and the presence of contaminants. Unexpectedly, few effects were attributible to the metal step materials. Numerous statistical interactions suggested that adequate levels of COF are more likely to be attained by targeting control on shoe soles and contaminants rather than the choice of a particular step material.
Technical Paper

A Survey of Automotive Occupant Restraint Systems: Where We’ve Been, Where We Are and Our Current Problems

In recent years, automotive occupant restraint system development has gained impetus, stimulated, in part, by new federal standards. But in the resolution of the basic question of whether automobiles should be equipped with restraints, many new problems have arisen, including, ironically, some brought on by regulation. While there is little doubt that restraint systems can provide the single most important contribution to occupant protection, such restraint systems remain useless unless adequately installed and properly worn. Current problems involve not only what concepts provide most promise for future restraint systems, but diverse and often conflicting industry and governmental opinion about what are the best interests of the motoring public. Restraints are still not provided in buses, trucks, and utility vehicles. In addition, the problems of child and infant restraints and restraints for retrofit in older vehicles remain unresolved.
Technical Paper

The Influence of Inlet Air Conditions on Carburetor Metering

This paper provides data concerning the enrichment of automotive carburetors with variation of inlet air pressure and temperature. These changes occur with weather and the seasons, with altitude, and because of underhood heating. The early opening of the conventional carburetor enrichment value at altitude can add greatly to the “ normal” carburetor enrichment. Means for compensating the mixture ratio for these changes in inlet air conditions are known, but will almost certainly add to the complexity and cost of the engine induction system. The cost of improved devices must be compromised with the possible reduction in exhaust emissions and improvement in fuel economy.
Technical Paper

An Innovative I-Bumper Concept for Improved Crashworthiness of Military and Commercial Vehicles

The greatest demand facing the automotive industry has been to provide safer vehicles with high fuel efficiency at minimum cost. Current automotive vehicle structures have one fundamental handicap: a short crumple zone for crash energy absorption. This leaves limited room for further safety improvement, especially for high-speed crashes. Breakthrough technologies are needed. One potential breakthrough is to use active devices instead of conventional passive devices. An innovative inflatable bumper concept [1], called the “I-bumper,” is being developed by the authors for crashworthiness and safety of military and commercial vehicles. The proposed I-bumper has several active structural components, including a morphing mechanism, a movable bumper, two explosive airbags, and a morphing lattice structure with a locking mechanism that provides desired rigidity and energy absorption capability during a vehicular crash.
Technical Paper

A Generic Methodology for Chamber Flame Geometry Modeling

Combustion flame geometry calculation is a critical task in the design and analysis of combustion engine chamber. Combustion flame directly influences the fuel economy, engine performance and efficiency. Currently, many of the flame geometry calculation methods assume certain specific chamber and piston top shapes and make some approximations to them. Even further, most methods can not handle multiple spark plug set-ups. Consequently, most of the current flame geometry calculation methods do not give accurate results and have some built-in limitations. They are particularly poor for adapting to any kind of new chamber geometry and spark plug set-up design. This report presents a novel methodology which allows the accurate calculation of flame geometry regardless of the chamber geometry and the number of spark plugs. In this methodology, solid models are used to represent the components within the chamber and unique attributes (colors) are attached respectively to these components.
Technical Paper

Development and Use of a Regenerative Braking Model for a Parallel Hybrid Electric Vehicle

A regenerative braking model for a parallel Hybrid Electric Vehicle (HEV) is developed in this work. This model computes the line and pad pressures for the front and rear brakes, the amount of generator use depending on the state of deceleration (i.e. the brake pedal position), and includes a wheel lock-up avoidance algorithm. The regenerative braking model has been developed in the symbolic programming environment of MATLAB/SIMULINK/STATEFLOW for downloadability to an actual HEV's control system. The regenerative braking model has been incorporated in NREL's HEV system simulation called ADVISOR. Code modules that have been changed to implement the new regenerative model are described. Resulting outputs are compared to the baseline regenerative braking model in the parent code. The behavior of the HEV system (battery state of charge, overall fuel economy, and emissions characteristics) with the baseline and the proposed regenerative braking strategy are first compared.
Technical Paper

Current Status and Future Prospects for Nonplanar Rearview Mirrors

The Federal Motor Vehicle Safety Standards currently require driver-side rearview mirrors to be flat. For rearview mirrors of typical size, this requirement normally results in a blind zone on the driver side that is large enough to conceal an average size passenger car. In recent years a number of studies have suggested that nonplanar rearview mirrors may be an effective solution to this problem. This paper reviews the evidence on possible effectiveness of nonplanar mirrors, assesses the strength of that evidence, and makes tentative recommendations. The main conclusion is that the use of nonplanar mirrors would probably result in a net gain in safety, but that the effectiveness of the mirrors is likely to depend on details of how they are implemented. Issues that should be resolved by additional research (some of which is already underway) are: (1) How would U.S. drivers respond to a mixed fleet of vehicles, some of which had flat mirrors and some of which had nonplanar mirrors?
Technical Paper

Distance Cues and Fields of View in Rear Vision Systems

The effects of image size on perceived distance have been of concern for convex rearview mirrors as well as camera-based rear vision systems. We suggest that the importance of image size is limited to cases-such as current rearview mirrors-in which the field of view is small. With larger, richer fields of view it is likely that other distance cues will dominate image size, thereby substantially diminishing the concern that distortions of size will result in distortions of distance perception. We report results from an experiment performed in a driving simulator, with static simulated rearward images, in which subjects were asked to make judgments about the distance to a rearward vehicle. The images showed a field of view substantially wider than provided by any of the individual rearview mirrors in current systems. The field of view was 38 degrees wide and was presented on displays that were either 16.7 or 8.5 degrees wide, thus minifying images by factors of 0.44 or 0.22.
Technical Paper

The Role of Binocular Information for Distance Perception in Rear-Vision Systems

New developments in the use of two-dimensional displays to supplement driver vision have made it more important to understand the roles that various distance cues play in driver perception of distance in more conventional ways of viewing the road, including direct vision and viewing through rearview mirrors. The current study was designed to investigate the role of binocular distance cues for perception of distance in rearview mirrors. In a field experiment, we obtained data to estimate the importance of binocular cues for distance judgments under conditions representative of real-world traffic. The results indicate that, although binocular cues are potentially available to drivers, these cues probably play little or no role in distance judgments in rearview mirrors in normal driving situations.
Technical Paper

Quantifying the Direct Field of View when Using Driver-Side Rearview Mirrors

In a static field study we tested drivers’ abilities to detect vehicles in the periphery of their direct fields of view while they gazed toward the driver-side exterior rearview mirror of a passenger car. The results indicate that both younger and older drivers can detect vehicles with reasonable efficiency even in far peripheral vision. However, the results also indicate that using peripheral vision entails a cost in terms of lengthened reaction time. Although that cost seems modest in comparison with the normal durations of glances to rearview mirrors and of direct looks to the rear, it is not clear from this study alone how the reaction time cost might influence the scanning strategies that drivers actually use in driving. The present study was oriented more to testing drivers’ basic visual capabilities than to outlining their overall strategies.
Technical Paper

Assessing the Fuel Economy Potential of Light-Duty Vehicles

This paper assesses the potential for car and light truck fuel economy improvements by 2010-15. We examine a range of refinements to body systems and powertrain, reflecting current best practice as well as emerging technologies such as advanced engine and transmission, lightweight materials, integrated starter-generators, and hybrid drive. Engine options are restricted to those already known to meet upcoming California emissions standards. Our approach is to apply a state-of-art vehicle system simulation model to assess vehicle fuel economy gains and performance levels. We select a set of baseline vehicles representing five major classes - Small and Standard Cars, Pickup Trucks, SUVs and Minivans - and analyze design changes likely to be commercially viable within the coming decade. Results vary by vehicle type.
Technical Paper

Driver Workload for Rear-Vision Systems With Single Versus Multiple Display Locations

Advances in camera and display technology have increased interest in using camera-based systems for all rear-vision functions. The flexibility of camera-based systems is unprecedented, and raises the possibility of providing drivers with fields of view that are very different from, and potentially much better than, those of conventional rearview mirrors. Current fields of view are based on a combination of driver needs and the practical constraints of mirror systems. In order to make the best use of the greater flexibility offered by cameras, a reassessment of drivers' needs for rear vision is needed. A full reassessment will require consideration of many factors. This paper offers a preliminary analysis of one of those factors: the visual workload involved in using rear-vision systems with single versus multiple displays.
Technical Paper

The Roles of Camera-Based Rear Vision Systems and Object-Detection Systems: Inferences from Crash Data

Advances in electronic countermeasures for lane-change crashes, including both camera-based rear vision systems and object-detection systems, have provided more options for meeting driver needs than were previously available with rearview mirrors. To some extent, human factors principles can be used to determine what countermeasures would best meet driver needs. However, it is also important to examine sets of crash data as closely as possible for the information they may provide. We review previous analyses of crash data and attempt to reconcile the implications of these analyses with each other as well as with general human factors principles. We argue that the data seem to indicate that the contribution of blind zones to lane-change crashes is substantial.
Technical Paper

Distance Perception in Camera-Based Rear Vision Systems

The importance of eye-to-display distance for distance perception in rear vision may depend on the type of display. At least in terms of its influence on the effective magnification of images, eye-to-display distance is almost irrelevant for flat rearview mirrors, but it is important for convex rearview mirrors and for other displays, such as video displays, that create images closer to the driver than the actual objects of interest. In the experiment we report here, we investigate the influence of eye-to-display distance on distance perception with both flat rearview mirrors and camera-based video displays. The results indicate that a simple model of distance perception based on the visual angles of images is not very successful. Visual angles may be important, but it appears that relationships between images of distant objects and the frames of the displays are also important. Further work is needed to fully understand how drivers might judge distance in camera-based displays.
Technical Paper

Framing Effects on Distance Perception in Rear-Vision Displays

The increasing availability of camera-based displays for indirect vision in vehicles is providing new opportunities to supplement drivers' direct views of the roadway and surrounding traffic, and is also raising new issues about how drivers perceive the positions and movements of surrounding vehicles. We recently reported evidence that drivers' perception of the distance to rearward vehicles seen in camera-based displays is affected not only by the visual angles subtended by the images of those vehicles, but also by the sizes of those images relative to the sizes of the displays within which they are seen (an influence that we have referred to as a framing effect). There was also evidence for a similar, but weaker, effect with rearview mirrors.