Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Permanent-Magnet DC Motor Actuators Application in Automotive Energy-Regenerative Active Suspensions

2009-04-20
2009-01-0227
An energy-regenerative vehicle suspension is proposed. Permanent-magnet direct-current motors are utilized as the active actuators in automotive suspension. The significant characteristic of the suspension is that vibration energy from the road excitation can be regenerated and transformed into electric energy while good suspension performance can be maintained. The modeling of electrical suspension system has been completed and simulated in Matlab/Simulink. The motor actuator working as a generator is proved to maintain the performance of vibration control and energy-regeneration. The prototype of motor actuator is designed and made. The vibration absorption and regeneration performances are verified by full-vehicle experiments.
Technical Paper

An Optimal Preview ANN Driver Model Based on Error Elimination Algorithm

2005-11-01
2005-01-3495
For the purposes of on-line control, e.g., in an automatic driving system, or of closed-loop directional control simulation, an optimal preview artificial neural network (ANN) driver model based on error elimination algorithm(EEA) is built. Then the optimal preview times are discussed in high frequency range in this system. The simulation results of optimal preview ANN driver model and Error Elimination Algorithm driver model are compared under the condition of different vehicle speeds and paths, which shows that the proposed approach is efficient and reliable enough, particularly for driver-vehicle closed-loop system.
Technical Paper

Study of Load Distribution for a Semi - Tracked Air - Cushion Vehicle

1999-09-14
1999-01-2788
A new design method is proposed for a semi-tracked air-cushion vehicle for soft terrain by using a flexible bind, which offers more flexibility in designing. This paper describes the design principle focusing on optimizing the total power consumption of the vehicle. The relationships of load distribution and power consumption are analyzed. The prototype experiments showed that the proposed design can meet the demand of tractive and transport efficiency with its optimal state of using minimum total power consumption and meanwhile maintaining ride comfort.
Journal Article

Control Model of Automated Driving Systems Based on SOTIF Evaluation

2020-04-14
2020-01-1214
In partially automated and conditionally automated vehicles, a part of the work of human drivers is replaced by the system, and the main source of safety risks is no longer system failures, but non-failure risks caused by insufficient system function design. The absence of unreasonable risk due to hazards resulting from functional insufficiencies of the intended functionality or by reasonably foreseeable misuse by persons, is referred to as the Safety Of The Intended Functionality. Drivers have the responsibility to supervise the automated driving system. When they don't agree with the operation behavior of the system, they will interfere with the instructions. However, this may lead to potential risks.
Journal Article

Design of an Adaptive FO-PID Controller for an In-Wheel-Motor Driven Electric Vehicle

2017-03-28
2017-01-0427
An EV prototype, with all the wheels respectively driven by 4 inwheel motors, is developed, and undergoes a series of practical measurements and road tests. Based on the obtained vehicle parameters, a multi-body dynamics model is built by using SolidWorks and Adams/Car, and then validated by track test data. The virtual prototype is served as the control plant in simulation. An adaptive fractional order PID (A-FO-PID) controller is designed to enhance the handling and stability performance of the EV. Considering the model uncertainties, e.g. the variation in body mass distribution and the consequent change in yaw moment of inertial, a Parameter Self-Adjusting Differential Evolution (PSA-DE) algorithm is adopted for tuning the controller parameters, i.e. KP, KI, KD, λ and μ. As a modification of traditional DE algorithm, the so-called Variance of Population’s Fitness is utilized to evaluate the diversity of the population.
Journal Article

Pitch Control for a Semi-track Air-cushion Vehicle Based on Optimal Power Consumption

2009-04-20
2009-01-1225
A new kind of integrated semi-track air-cushion pitch controller is proposed in this paper. The controller first compute the target working point based on a weighed function, which is the combination of optimal power consumption and pitch angle control demand. Then the sequential quadratic programming algorithm distributes the general target values to specific control values. The performance of the controller is verified through co-simulation between Matlab/Simulink and ADAMS/View. The simulation results show the effectiveness of the control algorithm and the correctness of the choice in physical configuration with two air cushions for vehicle body pitch control.
X