Refine Your Search

Topic

Author

Search Results

Journal Article

A Development of Energy Management System with Semi-Transparent Solar Roof and Off-Cycle Credit Test Methodology for Solar Power Assisted Automobile.

2017-03-28
2017-01-0388
CO2 emission is more serious in recent years and automobile manufacturers are interested in developing technologies to reduce CO2 emissions. Among various environmental-technologies, the use of solar roof as an electric energy source has been studied extensively. For example, in order to reduce the cabin ambient temperature, automotive manufacturers offer the option of mounting a solar cell on the roof of the vehicle [1]. In this paper, we introduce the semi-transparent solar cell mounted on a curved roof glass and we propose a solar energy management system to efficiently integrate the electricity generated from the solar roof into internal combustion engine (ICE) vehicles. In order to achieve a high efficiency solar system in different driving, we improve the usable power other than peak power of solar roof. Peak power or rated power is measured power (W) in standard test condition (@ 25°C, light intensity of 1000W/m2(=1Sun)).
Journal Article

Active Booming Noise Control for Hybrid Vehicles

2016-04-05
2016-01-1122
Pressure variation during engine combustion generates torque fluctuation that is delivered through the driveline. Torque fluctuation delivered to the tire shakes the vehicle body and causes the body components to vibrate, resulting in booming noise. HKMC (Hyundai Kia Motor Company)’s TMED (Transmission Mounted Electric Device) type generates booming noises due to increased weight from the addition of customized hybrid parts and the absence of a torque converter. Some of the improvements needed to overcome this weakness include reducing the torsion-damper stiffness, adding dynamic dampers, and moving the operation point of the engine from the optimized point. These modifications have some potential negative impacts such as increased cost and sacrificed fuel economy. Here, we introduce a method of reducing lock-up booming noise in an HEV at low engine speed.
Technical Paper

Development of an Air Support System for Long-Distance Drive Comfort

2020-04-14
2020-01-0868
Passenger fatigue during long distance driving is greatly influenced by the comfort performance of the seat. Seat comfort performance is determined by the appropriate contour of the seat and the appropriate pad with sufficient thickness. The height of vehicle has been lowered to enhance car styling, and battery for electric vehicle applied to the underbody of the vehicle, reducing the package space of the seat in the vehicle. These external factors eventually lead to a reduced pad thickness of the seat cushion and compromise one of the important components in the seat cushion compartment, creating an uncomfortable cushioning problem when driving long distances. To improve the cushion composition of the seat within a limited package, air bladders are applied to the underside of the cushion pad. In addition, the function to support the buttocks using the air bladders of the lower cushion, similar to lumbar support for the back, was implemented to improve cushion comfort performance.
Journal Article

Study of Optimizing Sliding Door Efforts and Package Layout

2017-03-28
2017-01-1302
A sliding door is one of the car door systems, which is generally applied to the vans. Compared with swing doors, a sliding door gives comfort to the passengers when they get in or out the car. With an increasing number of the family-scale activities, there followed a huge demand on the vans, which caused growing interests in the convenience technology of the sliding door system. A typical sliding door system has negative effects on the vehicle interior package and the operating effort. Since the door should move backward without touching the car body, the trajectory of the center rail should be a curve. The curve-shaped center rail infiltrates not only the passenger shoulder room, but also the opening flange curve, which results in the interior package loss. Moreover, as the passenger pulls the door outside handle along the normal direction of the door outer skin, the curved rail causes the opening effort loss.
Technical Paper

An Ergonomic Investigation for Control Types and Menu Design Types of In-Vehicle Information System (IVIS)

2007-08-05
2007-01-3514
The purpose of the study is to investigate the ergonomic issues for control types and menu design types of in-vehicle information system (IVIS). The results showed that 1) linear-type controls with linear-type menu design had better performance 2) rotary-type control with rotary-type menu design had good subjective preference score 3) the performance and subjective preference of IVIS interface were strongly influenced by the compatibility between control types and menu design types of IVIS 4) there was a tendency that the performance of IVIS tasks was better when the display was located at higher level on center fascia. The results can be applied to develop a new control and menu design of IVIS from ergonomic view points.
Technical Paper

Experimental Study on DGPS/RTK Based Path Following System Using Backstepping Control Methodology

2007-08-05
2007-01-3579
This paper mainly focuses on a lateral control law for pre-given path following which is developed by using the backstepping control design methodology. The position information of the vehicle is obtained by Real Time Kinematic DGPS, and the yaw rate and side-slip angle used in controller are estimated by Kalman estimator. To show the performance of the proposed controller under different speed and various path curvature conditions, the results are given through experiments which are executed on proving ground especially designed for high maneuvering test of which minimum radius of curvature is about 60 m.
Technical Paper

Development of High Wear Resistant and Durable Coatings for Al Valve Spring Retainer

2007-04-16
2007-01-1748
The use of light-weight materials in automotive engine components has increased in order to achieve better fuel efficiency and engine performance. In this study, Al alloy (AI5056) valve spring retainer can reduce a weight by 63% in comparison to steel and improve the upper limit of engine speed by about 500rpm. The Al valve spring retainer was fabricated by cold forging and coated with hard anodizing, DLC (diamond like coating), cold spray and thermal spray for better wear resistance and durability. We conclude that among these materials the DLC coating improves the wear resistance of Al valve spring retainer and has a sufficient durability after endurance testing.
Technical Paper

E3 System – A Two speed Accessory Belt Drive System for Reduced Fuel Consumption

2008-06-23
2008-01-1521
All vehicles have some or all accessories such as alternators, air conditioner compressors, power steering pumps, and water pumps. These devices are mounted on the front of the engine and are powered by a pulley mounted on the front of the crankshaft. This power represents a parasitic loss and this loss is greater at higher engine speeds. To reduce the impact of the accessories on the engine, a two speed transmission that reduces the accessories speed at off-idle conditions was designed, implemented, and tested on several vehicles. The vehicles were tested for fuel economy on the Japanese 10.15 Mode driving cycle, the FTP75 city cycle, and the HWFET Highway Cycle. Results showed an average of 5% reduction in fuel consumption and a corresponding 5% in CO2 with no impact of accessory performance and vehicle drivability. Simulations with GT-Drive software was used to determine the optimum speed reduction and the threshold switching speed that maximizes fuel savings.
Technical Paper

Predicting Driving Postures and Seated Positions in SUVs Using a 3D Digital Human Modeling Tool

2008-06-17
2008-01-1856
3D digital human modeling (DHM) tools for vehicle packaging facilitate ergonomic design and evaluation based on anthropometry, comfort, and force analysis. It is now possible to quickly predict postures and positions for drivers with selected anthropometry based on ergonomics principles. Despite their powerful visual representation technology for human movements and postures, these tools are still questioned with regard to the validity of the output they provide, especially when predictions are made for different populations. Driving postures and positions of two populations (i.e. North Americans and Koreans) were measured in actual and mock-up SUVs to investigate postural differences and evaluate the results provided by a DHM tool. No difference in driving postures was found between different stature groups within the same population. Between the two populations, however, preferred angles differed for three joints (i.e., ankle, thigh, and hip).
Technical Paper

Development of Mild Hybrid City Bus with a Single Voltage Source of 28 V

2008-04-14
2008-01-0086
The most popular issues nowadays in the automotive industry include reduction of environmental impacts by emission materials from automobiles as well as improvement of fuel economy. This paper deals with development of a ¡mild-hybrid¡ system for a city bus as an effort to increase fuel economy in a relatively reasonable expense. Three different technical tactics are employed; an engine is shut down at an engine idle state, a vehicle kinetic energy when the bus is decelerated is re-saved to a battery in the form of electricity, and finally the radiator cooling fan is operated by an electric motor using the saved electric energy with an optimal speed control. It has been demonstrated through the driving tests in a specific city mode, ¡Suwon city mode¡, that an average fuel economy is improved more than 12%, and the system can be a feasible choice in a city bus running in a city mode experiencing many stop and go¡s.
Technical Paper

A Numerical and Experimental Study on Power Steering Shudder

2008-04-14
2008-01-0501
Shudder vibration of a hydraulic power steering system during parking maneuver was studied with numerical and experimental methods. To quantify vibration performance of the system and recognize important stimuli for drivers, a shudder metric was derived by correlation between objective measurements and subjective ratings. A CAE model for steering wheel vibration analysis was developed and compared with measured data. In order to describe steering input dependency of shudder, a new dynamic friction modeling method, in which the magnitude of effective damping is determined by average velocity, was proposed. The developed model was validated using the measured steering wheel acceleration and the pressure change at inlet of the steering gear box. It was shown that the developed model successfully describes major modes by comparing the calculated FRF of the hydraulic system with measured one from the hydraulic excitation test.
Technical Paper

Characteristics of the Luxury Sound Quality of a Premium Class Passenger Car

2009-05-19
2009-01-2183
Luxury sound is one of the most important sound qualities in a premium passenger car. Previous work has shown that, because of the effects of many different interior sounds, it is difficult to evaluate the luxury sound objectively by using only the A-weighted sound pressure level. In this paper, the characteristics of such sound were first investigated by a systematic approach and a new objective evaluation method for luxury sound-the luxury sound quality index--which was developed by the systematic combination of the seven major interior sound quality indexes based on path analysis. The seven major sounds inside a passenger car were selected by a basic investigation evaluated by the members of a luxury automotive club. Seven major interior sound quality indexes were developed by using sound metrics, which are the psychoacoustic parameters, and the multiple regression method used for the modeling of the correlation between objective and subjective evaluation.
Technical Paper

Reduction of Interior Booming Noise for a Small Diesel Engine Vehicle without Balance Shaft Module

2009-05-19
2009-01-2121
Applying BSM (Balance shaft module) is a very common and effective way to reduce the 2nd-order powertrain vibration which is caused by the ill-balanced inertia force due to the oscillating masses inside an engine. However, the adoption of a BSM can also produce undesirable things especially in cost, fuel economy, starting performance, and so on. Therefore, for small vehicles, in which case cost and weight are key factors at the development stage, it is often required to develop competitive NVH performance without the expensive apparatus like a BSM. In this paper, in order to develop interior noise and vibration of a 4-cylinder vehicle without a BSM, we analyzed the contribution of some transfer paths for powertrain vibration, and could reduce interior booming noise by tuning the dynamic characteristic of the engine mount which was one of the largest transfer paths.
Technical Paper

Drivability Development Based on CoSimulation of AMESim Vehicle Model and Simulink HCU Model for Parallel Hybrid Electric Vehicle

2009-04-20
2009-01-0725
Parallel Hybrid Electric Vehicle consists of internal combustion engine, engine clutch, motor, automatic transmission, Integrated Starter Generator (ISG), and battery. Due to hybridizations such as using engine clutch to disengage the internal combustion engine and omitting torque converter from the automatic transmission to increase fuel economy, drivability will not be same as conventional vehicle. To ensure drivability comparable to conventional vehicle, dynamic simulation has been utilized to foresee the drivability issues for the proposed hybrid system and ideas for improvements are tested in simulation. CoSimulation of AMESim vehicle model and Simulink Hybrid Control Unit (HCU) model has been used to test and improve HCU logic.
Technical Paper

Reduction of Aeolian Noise from Roof Rack Crossbars Using Asymmetric Cross-Section Geometry

2002-03-04
2002-01-1275
Roof racks have become a very popular feature of vehicles as the market demand for SUV's and RV's has increased drastically over the years. Aeolian tone from the cross bars however, could be a source of severe discomfort for the passengers. Both experimental and numerical steps are taken to enhance the understanding of the generation mechanism of the wind noise. A successful reduction of the noise is achieved by imposing asymmetry in the section geometry, which reduces the strength of Karman vortices shed downstream.
Technical Paper

Effects of VGT and Injection Parameters on Performance of HSDI Diesel Engine with Common Rail FIE System

2002-03-04
2002-01-0504
Recently, high speed direct injection (HSDI) diesel engines are rapidly expanding their application to passenger cars and light duty commercial vehicles in western European market and other countries such as Korea and Japan. These movements are strongly backed by the technological innovations in the area of air charging and high pressure fuel injection systems. Variable geometry turbine (VGT) turbocharger, which could overcome the typical weak point of the existing turbocharged engine, and the common rail fuel injection system, which extended the flexibility of fuel injection capability, became two of the most frequently referred keywords in recent HSDI technology. In this paper some aspects of VGT potential as a full load torque and power modulator will be discussed. Possibility to utilize the portion of full load potential in favor of part load emissions and fuel economy will be investigated.
Technical Paper

An Optimized Control Strategy for Parallel Hybrid Electric Vehicle

2003-03-03
2003-01-1329
A systematic process of optimization is suggested to obtain the best control maps for a parallel type hybrid electric vehicle. Taking the fuel consumption as the cost function and driving cycle as part of the constraints, an optimization problem for CVT pulley ratio control and motor torque control can be formulated. The change of the battery charge state between the start and end point of the given driving cycle also works as a constraint. In order to see the effect of various control strategies on system behavior and overall fuel consumption, a simulation model was built to accommodate the functional blocks representing hybrid powertrain subsystem components and corresponding control units.
Technical Paper

Multi-Disciplinary Vehicle Styling Optimization: All at Once Approach for Stiffness, Light-Weight and Ergonomics with Analytical Model Based on Compartment Decomposition

2003-03-03
2003-01-1330
The topology optimization made a great success in pure structural design in an actual industrial field. However, a lot of factors interact each other in a actual engineering field in highly complicated manner. The typical conceptual trade-off is that cost and performance, that is, since they are competing factors, one can't improve the specific system without consideration of interaction. The vehicle has lots of competing factors, especially like fuel economy and acceleration performance, mass and stiffness, roominess and cost, short front overhang and crash-worthiness and so on. In addition, they interact each other in a more complicated manner, that is, fuel economy has something to do with not only engine performance but also mass, roominess, stiffness, the length of overhang, trunk volume, etc. So, most of decision-makings have been made by management based on subjective knowledge and experience.
Technical Paper

The Unified Relationship between Torque and Gear Ratio and Its Application in Multi-Step Automatic Transmissions

2016-04-05
2016-01-1098
The market demands for CO2 reduction and fuel economy have led to a variety of new gear set concepts of automatic transmissions with 4 planetary gear sets and 6 shift elements in recent years. Understanding the relationship between the torque of clutch and brake and gear ratio in the design stage is very important to assess new gear set concepts and to set up the control strategy for enhancing shift quality and to reduce the heat generation of clutch and brake. In this paper, a new systematic approach is used to unify the relationship between torque and gear ratio during the gear shift for all multi-step planetary automatic transmissions. This study describes the unified concept model with a lumped inertia regardless of the specific transmission layout and derives the principal unified relationship equations using torque and energy analysis, which prove that the sum of brake torque is always gear ratio -1 in every in-gear.
Technical Paper

Development of Smart Shift and Drive Control System Based on the Personal Driving Style Adaptation

2016-04-05
2016-01-1112
In general, driving performance is developed to meet preference of average customers. But there is no single standardized guideline which can satisfy various driving tastes of all drivers whose gender, cultural background, and age are different. To resolve this issue, automotive companies have introduced drive mode buttons which drivers can manually select from Normal, Eco, and Sport driving modes. Although this multi-mode manual systems is more efficient than single-mode system, it is in a transient state where drivers need to go through troubles of frequently selecting their preferred drive mode in volatile driving situations It is also doubtful whether the three-categorized driving mode can meet complex needs of drivers.. In order to settle these matters, it is necessary to analyze individual driving style automatically and to provide customized driving performance service in real time.
X