Refine Your Search




Search Results

Journal Article

Particulate Matter Trapping and Oxidation on a Catalyst Membrane

Particulate matter (PM) trapping and oxidation in regeneration on the surface of a diesel particulate catalyst-membrane filter (DPMFs) were investigated in detail using an all-in-focus optical microscope. The DPMF consists of two-layer sintered filters, where a SiC-nanoparticle membrane (made from a mixture of 80 nm and 500 nm powders) covers the surface of a conventional SiC filter. Using a visualization experiment, it was shown that PMs were trapped homogeneously along fine surface pores of the membrane's top surface, whereas in the regeneration process, the particulates in contact with the membrane may have been oxidized with some catalytic effect of the SiC nanoparticles. A soot cake was reacted continuously on the nanoparticles since pushed by a gas flow. The oxidation temperature of particulate trapped on the SiC-nanoparticle membrane was about 75 degrees lower than that on the conventional diesel particulate filters (DPF) without a catalyst.
Technical Paper

Simultaneous Measurements of the Components of VOCs and PAHs in Diesel Exhaust Gas using a Laser Ionization Method

A simple real-time measurement system for the components of volatile organic compounds (VOCs) and polyaromatic hydrocarbons (PAHs) in automobile exhaust gas using a laser ionization method was developed. This method was used to detect VOCs and PAHs in the exhaust gas of a diesel truck while idling, at 60 km/h, and in the Japanese driving mode JE05. As a result, various VOCs and PAHs, such as xylene and naphthalene, were simultaneously detected, and real-time changes in their concentration were obtained at 1 s intervals.
Technical Paper

Lattice Boltzmann Simulation on Particle Transport and Captured Behaviors in a 3D-Reconstructed Micro Porous DPF

In this study, particle transport and captured behaviors in a Diesel Particulate Filter (DPF) was investigated with Lattice Boltzmann Method. LBM calculation was performed to a 3D-reconstructed micro porous DPF substrate, which was obtained by micro-focus 3D X-ray technique. Simulating advection-diffusion behaviors of diesel particulates in micro porous channel, we adapted a LBM method used for high Peclet number flow, simulating flow conditions in DPFs. We investigated flow behaviors in a wide variety of inlet velocity. LBM simulation has clearly shown that non-dimensional flow field is similar in wide range of flow conditions in the DPF, because flow Reynolds number in the micro porous substrate is sufficiently low, dominated by laminar flow regime. It was also revealed that less than 40% pore channels was responsible for more than 80% volume flux in the porous substrate without particle loading.
Technical Paper

Scanning Electron Microscopic Visualization of Transition from Surface Pore Filtration to Cake Filtration Inside Diesel Particulate Filter Walls

Surface pores that are open to the inlet channel below the surface play a particularly important role in the filtration of particulate matter (i.e., soot) inside the walls of a diesel particulate filter (DPF); they are closely related to the pressure drop and filtration efficiency through the DPF as well as the performance of the regeneration process. In this study, a scanning electron microscope (SEM) was used to dynamically visualize the soot deposition process at the particle scale as “time-lapse” images corresponding to the different increases in the pressure drop at each time step. The soot was first trapped at the deepest areas of the surface pores because the porous channels in this area were constricted by silicon carbide grains; soot dendrite structures were observed to grow and finally cause obstructions here.
Technical Paper

Effect of Coexistent Additives on the Friction Characteristics and Tribofilm formation of Zinc Dialkyldithiophosphate

The major aim of this study is to investigate the tribofilm formation and friction-speed characteristics of ZnDTP in the presence of other lubricant additives. Simultaneous measurement of friction and electrical conductivity were employed using ZnDTP and several kinds of functionally different additives. Several analyses of friction surfaces were also carried out in order to measure the reaction film thickness and investigate the chemical composition of this film. It was demonstrated that the presence of each additive with ZnDTP prevented the formation of a ZnDTP tribofilm and thereby could provide lower friction than ZnDTP alone.
Technical Paper

Development of a Novel Ignition System Using Repetitive Pulse Discharges: Ignition Characteristics of Premixed Hydrocarbon-Air Mixtures

A newly developed small-sized IES (inductive energy storage) circuit with static induction thyristor at turn-off action was successfully applied to an ignition system. This IEC circuit can generate repetitive nanosecond pulse discharges. In this paper, the ignition system using repetitive nanosecond pulse discharges was investigated as an alternative to conventional spark ignition systems. The experiments were conducted using spherically expanding flame configuration for CH4 and C3H8-air mixtures under various conditions. In conclusions, the ignition system using repetitive nanosecond pulse discharges was found to extend lean flammability limits compared with conventional spark ignition systems. In addition, the ignition system using repetitive nanosecond pulse discharges could shorten ignition delay time.
Technical Paper

A DNS Study on Global and Local Flame Structures In Thin Reaction Zones

Three-dimensional direct numerical simulations of methane-air turbulent premixed flame propagating in homogenous isotropic turbulence are conducted to investigate local and global flame structure in thin reaction zones. GRI-Mech 3.0 is used to represent methane-air reactions. The equivalence ratio of unburned mixture is 0.6 and 1.0. For a better understanding of the local flame structure in thin reaction zones, distributions of mass fractions of major species, heat release rate and temperature are investigated. To clarify effects of turbulence on the local and global flame structures, the statistical characteristics of flame elements are also revealed.
Technical Paper

A 3D DNS Investigation on the Flame-Wall Interactions and Heat Loss in a Constant Volume Vessel

A direct numerical simulation of turbulent premixed flames in a constant volume vessel is conducted to understand flame-wall interactions and heat loss characteristics under the pressure rising condition. The contribution of the burnt region to the total heat flux is more significant compared to the reaction region. The velocity profiles indicate inward and outward motions. The profile of the turbulent kinetic energy is damped by the wall, and no distinct turbulence production is observed. Since the turbulence is weakened in the burnt region, the effect of near wall turbulence to the total wall heat flux is considered to be limited.
Journal Article

Investigation of Soot Oxidation Carried out on Membrane Filters Composed of SiC Nanoparticles

The diesel particulate membrane filter (DPMF) is a good solution to the problem of high pressure drop that exists across diesel particulate filters (DPFs) as a result of the soot trapping process. Moreover, DPMFs that have a membrane layer composed of SiC nanoparticles can reduce the oxidation temperature of soot and the apparent activation energy. The SiC nanoparticles have an oxide layer on their surface, with a thickness less than 10 nm. From the visualization of soot oxidation on the surface of SiC nanoparticles by an environmental transmission electron microscope (ETEM), soot oxidation is seen to occur at the interface between the soot and oxide layers. The soot oxidation temperature dependency of the contact area between soot and SiC nanoparticles was evaluated using a temperature programmed reactor (TPR). The contact area between soot and SiC nanoparticles was varied by changing the ratio of SiC nanoparticles and carbon black (CB), which was used as an alternative to soot.
Technical Paper

NOx Reduction with the HC-SCR System over Cu/Zeolite Based Catalysts

Diesel engine is one the effective solutions for reducing CO2 and recognized as a leading candidate for mitigating global warming. To comply with increasingly stringent emission standards, all diesel engines require some sort of NOx control systems such as selective catalytic reduction (SCR) systems. The SCR catalyst for reducing NOx from diesel engines is classified into two groups, urea-SCR and HC-SCR catalyst, respectively. Although the urea-SCR catalyst is widely recognized as promising de-NOx technology in respect to the NOx conversion efficiency, it have some outstanding issues such as ammonia slip, urea injection, storage space, freezing and some infrastructures for supplying urea water solutions. In an attempt to overcome the inherent shortcoming of existing urea-SCR catalyst, hydrocarbons have been considered as alternative reducing agents for SCR process, instead of NH3.
Journal Article

Scanning Electron Microscopic Visualization of Bridge Formation inside the Porous Channels of Diesel Particulate Filters

Time-lapse images of particulate matter (PM) deposition on diesel particulate filters (DPFs) at the PM-particle scale were obtained via field-emission scanning electron microscopy (FE-SEM). This particle scale time-series visualization showed the detailed processes of PM accumulation inside the DPF. First, PM introduced into a micro-pore of the DPF wall was deposited onto the surface of SiC grains composing the DPF, where it formed dendritic structures. The dendrite structures were locally grown at the contracted flow area between the SiC grains by accumulation of PM, ultimately constructing a bridge and closing the porous channel. To investigate the dominant parameters governing bridge formation, the filtration efficiency by Brownian diffusion and by interception obtained using theoretical filtration efficiency analysis of a spherical collector model were compared with the visualization results.
Technical Paper

A Design Guide for Wet Multiple Plate Clutches on Forklift Truck Transmissions Considering Strength Balance between Friction Material and Mating Plate

Wet multiple plate clutches consist of friction plates, on which a friction material is bonded, and mating plates that are plain metal plates. Since the frequency and the range of load in the field of forklift trucks vary widely and are more severe than those for passenger cars, the wet multiple plate clutches on forklift trucks are often damaged. Damaged clutches that were returned from the field typically had 3 types of symptoms: 1.Only the friction material was damaged, 2.Only the mating plates were deformed, 3.Both symptoms were observed. It was clear that the cause of these symptoms depended on the difference of the operating application and the strength criteria of each part. This showed that a design guide for wet multiple plate clutches considering the strength balance between the two parts according to the work application was required. The relevant flow chart of this design process was proposed.
Technical Paper

Characteristics of Soot Oxidation at the Interface between Soot and Silicon-Oxy-Carbide with Embedded Single Nanosized Pt Particles

A diesel particulate membrane filter (DPMF) offers good trapping efficiency of soot and reduces the pressure loss through the soot-trapping process. We found that one specific design of DPMF has the effect of reducing the apparent activation energy of the soot oxidation. The membrane is made of SiC nanoparticles with a diameter of 10-100 nm, which are covered with a thin silicon-oxy-carbide layer with a thickness of about 5 nm. The apparent activation energy of soot oxidation on the DPMF was reduced by 30-40 kJ/mol than conventional SiC-DPF. Furthermore, the light-off temperature of soot oxidation on the DPMF (with single nanosized Pt) is about 100°C lower than that of the DPMF (without Pt). The single nanosized Pt particles are embedded in the silicon-oxy-carbide layer. The formation of additional Pt is different from that which takes place in a conventional catalyzed soot filter (CSF). In a conventional CSF, the surface of the Pt particles is exposed to the atmosphere.
Technical Paper

Physical Characterization of Biodiesel Particle Emission by Electron Microscopy

Nanostructures of diesel and biodiesel engine particulate matters (PMs) were investigated by using a Transmission Electron Microscopy (TEM). The average single particle sizes of biodiesel and diesel PMs are approximately 30-40 nm and 50-60 nm, respectively. Image processing process was used to estimate each carbon platelet length by using TEM image. The average carbon platelet length of biodiesel and diesel PMs are in the range of 0.1-7.0 nm. Moreover, carbon atoms per cubic volume of PMs are approximately 500-900. The result shows that engine load and fuel property are strongly impact on the size of single particle and carbon atom density of particle. This is one of interesting behaviors need to be investigated for better understanding. The results of this research would be used as basic information for design and develop removing process of PM emitted from engine combustion which using in diesel and biodiesel fuels.
Technical Paper

Investigation into Qualitative Dynamic Characteristics Analysis of Hydraulically Damped Rubber Mount for Vehicle Engine

Hydraulically damped rubber mount (HDM) can effectively attenuate vibrations transmitting between automotive powertrain and body/chassis, and reduce interior noise of car compartment. This paper involves an analytical qualitative analysis approach of dynamics characteristics of HDM. Analysis of experimental results verifies the effectiveness of the qualitative analysis approach. Frequency- and amplitude-dependent dynamic characteristic of HDM are investigated to clarify working mechanism of HDM. The presented qualitative analysis approach provides a convenient performance adjustment guideline of HDM to meet vibration isolation requirements of powertrain mount system.
Journal Article

Simultaneous Measurements of Aromatic Hydrocarbons in Exhaust using a Laser Ionization Method

A simultaneous multi-composition analyzing (SMCA) resonance enhanced multi-photon ionization (REMPI) system was used to investigate gasoline engine exhaust. Observed peaks for exhaust were smaller mass numbers than those from diesel exhaust. However, large species up to three ring aromatics were observed suggesting that soot precursor forms even in the gasoline engine. At low catalyst temperature condition, the reduction efficiencies of a three-way catalyst were higher for higher mass numbers. This result indicates that the larger species accumulate in the catalyst or elsewhere due to their lower vapor pressures. To evaluate the emission of low volatility species, the accumulation should be taken into account. In the hot mode, reduction efficiencies for aromatic species of three-way catalyst were almost 99.5% however, they fall to 70% in the cold start condition.
Technical Paper

Real-time Analysis of Benzene in Exhaust Gas from Driving Automobiles Using Jet-REMPI Method

Real-time analysis of benzene in automobile exhaust gas was performed using the Jet-REMPI (supersonic jet / resonance enhanced multi-photon ionization) method. Real-time benzene concentration of two diesel trucks and one gasoline vehicle driving in Japanese driving modes were observed under ppm level at 1 s intervals. As a result, it became obvious that there were many differences in their emission tendencies, because of their car types, driving conditions, and catalyst conditions. In two diesel vehicle, benzene emission tendencies were opposite. And, in a gasoline vehicle, emission pattern were different between hot and cold conditions due to the catalyst conditions.
Journal Article

Visualization of Oxidation of Soot Nanoparticles Trapped on a Diesel Particulate Membrane Filter

Through microscopic visualization experiments, a process generally known as depth filtration was shown to be caused by surface pores. Moreover, the existence of a soot cake layer was an important advantage for filtration performance because it could trap most of the particulates. We proposed an ideal diesel particulate filter (DPF), in which a silicon carbide (SiC) nanoparticle membrane (made from a mixture of 80 nm and 500 nm powders) instead of a soot cake was sintered on the DPF wall surface; this improved the filtration performance at the beginning of the trapping process and reduced energy consumption during the regeneration process. The proposed filter was called a diesel particulate membrane filter (DPMF). A diesel fuel lamp was used in the trapping process to verify the trapping and oxidation mechanisms of ultrafine particulate matter. Thus, the filtration performance of the membrane filters was shown to be better than that of conventional DPFs.
Journal Article

Microscopic Visualization of PM Trapping and Regeneration in Micro-Structural Pores of a DPF Wall

Trapping and regeneration processes in a SiC wall-flow diesel particulate filter (DPF) without a catalyst were investigated in detail through microscopic visualization. By microscopic observation of the cross section and surface, the transition from depth filtration to surface filtration could be observed clearly. The open pores on the wall surface were strongly related to the filtration depth of diesel particulate matter (PM). During the regeneration process, after the soot cake was burnt out, the particulates trapped inside the surface pores were oxidized. As a result, the particulate trapping and oxidation behaviors were strongly dependent on the microstructural surface pores.
Technical Paper

Extension of Lean and Diluted Combustion Stability Limits by Using Repetitive Pulse Discharges

A newly developed small-sized IES (inductive energy storage) circuit with a semiconductor switch at turn-off action was successfully applied to an ignition system. This IES circuit can generate repetitive nanosecond pulse discharges. An ignition system using repetitive nanosecond pulse discharges was investigated as an alternative to conventional spark ignition systems in the previous papers. Experiments were conducted using constant volume chamber for CH₄ and C₃H₈-air mixtures. The ignition system using repetitive nanosecond pulse discharges was found to improve the inflammability of lean combustible mixtures, such as extended flammability limits, shorted ignition delay time, with increasing the number of pulses for CH₄ and C₃H₈-air mixtures under various conditions. The mechanisms for improving the inflammability were discussed and the effectiveness of IES circuit under EGR condition was also verified.