Refine Your Search

Topic

Author

Search Results

Technical Paper

Development of a Novel Ignition System Using Repetitive Pulse Discharges: Ignition Characteristics of Premixed Hydrocarbon-Air Mixtures

2008-04-14
2008-01-0468
A newly developed small-sized IES (inductive energy storage) circuit with static induction thyristor at turn-off action was successfully applied to an ignition system. This IEC circuit can generate repetitive nanosecond pulse discharges. In this paper, the ignition system using repetitive nanosecond pulse discharges was investigated as an alternative to conventional spark ignition systems. The experiments were conducted using spherically expanding flame configuration for CH4 and C3H8-air mixtures under various conditions. In conclusions, the ignition system using repetitive nanosecond pulse discharges was found to extend lean flammability limits compared with conventional spark ignition systems. In addition, the ignition system using repetitive nanosecond pulse discharges could shorten ignition delay time.
Technical Paper

Active Control of Drive Motion of Four Wheel Steering Car with Neural Network

1994-03-01
940229
Two kinds of active control systems, using neural networks (NN), are presented for realizing optimal driving motion of four wheel steer (4WS) cars. The first system is based on the assumption that the car is simplified as a linear two wheel bycycle model, and that the friction force between tire and road surface is represented by Fiala's nonlinear model. The nonlinear relation between the slip angle of tire and the cornering force is expressed with NN. A model-following type control strategy is adopted in the first system, with both the feedforward and feedback gains for the control of the rear wheel steering angle adaptively determined with NN according to change of front wheel steering angle. The second system is based on the assumption that both the dynamical characteristics of the car and the tire friction force are nonlinear. The nonlinear dynamical characteristics of the car and the friction force are identified with NN, using the measured data of an actual car.
Technical Paper

Extension of Lean and Diluted Combustion Stability Limits by Using Repetitive Pulse Discharges

2010-04-12
2010-01-0173
A newly developed small-sized IES (inductive energy storage) circuit with a semiconductor switch at turn-off action was successfully applied to an ignition system. This IES circuit can generate repetitive nanosecond pulse discharges. An ignition system using repetitive nanosecond pulse discharges was investigated as an alternative to conventional spark ignition systems in the previous papers. Experiments were conducted using constant volume chamber for CH₄ and C₃H₈-air mixtures. The ignition system using repetitive nanosecond pulse discharges was found to improve the inflammability of lean combustible mixtures, such as extended flammability limits, shorted ignition delay time, with increasing the number of pulses for CH₄ and C₃H₈-air mixtures under various conditions. The mechanisms for improving the inflammability were discussed and the effectiveness of IES circuit under EGR condition was also verified.
Technical Paper

Characterization of Carbon Fiber and Glass Fiber’s Micro and Nanostructure Using Electron Microscopy, Raman Spectroscopy and XRD Analysis

2019-03-25
2019-01-1441
Nowadays, most manufacturers are looking for the improvement of lightweight parts and other components in the automobile field. Carbon fiber and glass fiber are the most effective materials for their requirement to reduce the weight in vehicles due to their light weight and high tensile strength. The diameter of carbon fiber is 6 μm while glass fiber diameter is 17 μm. The mechanical tensile force of carbon fiber and glass fiber are 430 N and 290 N respectively on fiber alone without matrix. Carbon fibers are gradually smaller in each filament due to tensile force. Approximately 5 mm are elongated for both carbon fiber and glass fiber in tensile test report. In current research, characteristic and tensile force of carbon fiber and glass fiber were investigated by using electron microscopy, Raman spectroscopy and XRD.
Technical Paper

Impact of TiO2 and V2O5 on Sintered Mullite Porous Microstructure and Soot Oxidation Kinetics Using SEM and TGA

2019-03-25
2019-01-1407
The exhaust emissions from diesel combustion are the sources of particulate matter emitted to the atmosphere, which are components of air pollution that implicated in human health such as lung cancer. At present the diesel particulate filter can remove PM from the exhaust gas before emitted to the atmosphere. This research is investigating morphology and structure of acicular mullite to develop the fabrication process filter in order to study particulate matters trapping and oxidation mechanisms. This paper used two main substances to study the structure of diesel particulate filter (DPFs); Aluminum oxide (Al2O3) and Silicon dioxide (SiO2). These are mainly in the conventional DPFs. The variable substances are Titanium dioxide (TiO2) and Vanadium oxide (V2O5), which added to investigate and produce the acicular mullite DPFs structure. The mullite samples were sintered at 1300 oC with holding time of 1 h.
Technical Paper

Creation of Image on Diesel Spray and Flame by Means of Rapid Compression Machine and D.I Diesel Engine

1983-02-01
830447
The continous series of images on diesel spray and flame were created through the studies by means of using Rapid Compression Machine and D.I engine based on our latest data. 1. The image of diesel spray were elucidated through the study of thermodynamical global evaporation phenomena and the measurement of instantaneous distribution maps of spray fuel concentration by the high speed photo image analysis method at non-evaporated, evaporated states of free spray under the diesel condition at RCM. 2. The image of diesel flame were also obtained at the instantaneous distribution maps of temperature, soot and concentration of combustion products in the flame by means of photo image analysis method and gas sampling method at free and wall impinging spray flame with RCM and D.I engine.
Technical Paper

Application of Direct System Identification Method for Engine Rigid Body Mount System

1986-02-01
860551
This paper concerns the Direct System Identification Method (hereafter referred to as DSIM) which allows accurate and quick determination of two groups of properties which exercise dominant effects on low frequency vibration of a vehicle body. The first group is the rigid body properties of an engine. The second group is the properties of each engine mount. Under the assumption that the engine/mount system is a rigid body, this paper makes theoretical discussion for using the DSIM to induce the parameters of an engine/mount system, and makes improvements for better correlation with experiments. Also mentioned is a comparison of this study with the experimental results and verification of consistency on those parameters obtained from DSIM to predict the accurate vehicle characteristics, along with the role this method will play in upgrading the technology of prediction analysis.
Technical Paper

Effect of High Pressure Injection on Soot Formation Processes in a Rapid Compression Machine to Simulate Diesel Flames

1987-09-01
871610
The characteristics of diesel spray and flame in a quiescent atmosphere were studied as a function of injection pressure ranging from 30 to 110 MPa. Measurements included the spray form and Sauter mean diameter of a non-evaporating spray, the liquid phase penetration of an evaporating spray and the visualization of sooting zone in a flame. Experimental results show that high pressure injection improves the atomization and air entrainment of non-evaporating spray and that the liquid phase penetration of evaporating spray is hardly affected by injection pressure, demonstrating a promotion of evaporation with injection pressure. Visualization of the sooting zone in a flame made it clear that high pressure injection is advantageous in reducing soot formation and shortening the combustion duration.
Technical Paper

Development of a Rapid Compression-Expansion Machine to Simulate Combustion in Diesel Engines

1988-10-01
881640
A rapid compression-expansion machine which can simulate the combustion processes in diesel engines is developed. The configuration of the combustion chamber is a 100 mm bore and a 90 mm stroke, and the compression ratio is 15. The piston is driven by an electro-hydraulic system with a thrust of 90 kN and the maximum frequency of 20 Hz. The whole system composed of a hydraulic actuator, a fuel injection system, and a valve driving unit is sequentially controlled by a computer. The reproducibility of the stop position of the piston at the end of compression is achieved with an accuracy of ±0.1 mm by employing a hydraulic-mechanical brake mechanism. The experiment shows that the combustion in the expansion stroke is achieved, and that the combustion characteristics such as the rate of heat release and indicated output as well as the exhaust emission can be measured.
Technical Paper

A New Technique for the Measurement of Sauter Mean Diameter of Droplets in Unsteady Dense Sprays

1989-02-01
890316
A new technique is developed for the in-situ measurement of Sauter mean diameter of droplets in non-evaporating transient dense sprays. This method analyzes the image of a shadowpicture of a spray based on the incident light extinction principle, and allows the sizing of Sauter mean diameter of whole droplets in a transient spray with any shape. In addition, this method allows the measurement of the local droplet size in a quasi-steady region of an axisymmetric spray if the conservation equations regarding mass and momentum are included in the calculation and data analysis. A calibration was carried out using glass beads as test particles: this was proved to have an accuracy of Sauter mean diameter measurement within 10%, on average. Applications of the new technique to both diesel and gasoline (EFI) sprays have been made.
Technical Paper

Pyrene-LIF Thermometry of the Early Soot Formation Region in a Diesel Spray Flame

2005-09-11
2005-24-006
In order to investigate early soot formation process in diesel combustion, spectral analysis and optical thermometry of early soot formation region in a transient spray flame under diesel-like conditions (Pg2.8 MPa, Tg620-820K) was attempted via laser-induced fluorescence (LIF) from pyrene (C16H10) doped in the fuel. Pyrene is known to exhibit a temperature\-dependent variation of LIF spectrum; the ratio of S2/S1 fluorescence yields, from the lowest excited singlet state S1 and the second excited singlet state S2, depends on temperature. In the present study, pyrene was doped (1%wt) in a model diesel fuel (0-solvent) and the variation of LIF spectra from the pyrene in the spray flame in a rapid compression machine were examined at different ambient temperatures, ambient oxygen concentrations, measurement positions and timings after start of fuel injection.
Technical Paper

A Study on Effect of Heterogeneity of Oxygen Concentration of Mixture in a Combustion Chamber on Combustion and Emissions of Diesel Engine

2007-07-23
2007-01-1845
In this study, the combustion characteristics of diesel flame achieved in a rapid compression and expansion machine (RCEM) at various patterns of oxygen distribution in the chamber are investigated in order to clarify the effect of heterogeneity of oxygen distribution in diesel engines induced by EGR on the soot and NOx emissions. To make the heterogeneous distribution of oxygen in a combustion chamber, the mixtures with different oxygen concentrations are injected through the each different port located on the cylinder wall. Results indicate that the amount of oxygen entrained into the spray upstream the luminous flame region affects the NO emission from diesel flame strongly.
Technical Paper

Engine Mount Characteristics Identification of Large Outboard Motor Using Experimental Modal Analysis

2006-11-13
2006-32-0083
The method was established to identify the dynamic stiffness of the engine mount using modal parameters acquired from experimental modal analysis. Vibration tests were conducted using actual large outboard motor the BF225 (165 kW), and the dynamic stiffness of the mounts was identified. The results show that this method can identify the engine mount dynamic stiffness more adequately than the conventional method, even when the engine mounts are subjected to loads corresponding to thrust force or even in the case that the stiffness of the parts supporting an outboard motor is low.
Technical Paper

A Study of the Structure of Diesel Sprays Using 2-D Imaging Techniques

1992-02-01
920107
The structure of dense sprays was investigated using 2-D imaging techniques. To investigate the mechanism of atomization, the liquid phase in a non-evaporating spray was visualized by a thin laser sheet formed by a single pulse from a Nd:YAG laser at the distance from 4 to 19 mm from the nozzle orifice with the injection pressure and the surrounding gas density as parameters. A new technique for the visualization of vapor phase in an evaporating spray, the SSI (Silicone particle Scattering Imaging) method, was proposed to investigate the structure of the vapor phase regions of the spray.
Technical Paper

A Study on Soot Formation in Unsteady Spray Flames via 2-D Soot Imaging

1992-02-01
920114
The formation and oxidation processes of soot particles in unsteady spray flames were investigated in a quiescent atmosphere using 2-D laser sheet visualization. The mid-plane of a flame was illuminated twice during a short time-interval by a laser sheet from a double-pulsed YAG laser. An image pair of the scattered light from soot particles was taken by two intensified gated cameras in succession. The velocity vectors of soot clouds at various location in the sooting region were estimated using the spatial correlation between the image pair. The results of temporal and spatial variation of velocity and scattering intensity in the evolving soot clusters made it clear that soot is mainly formed in the periphery of the flame tip where the air entrainment is less and flame temperature favors soot formation.
Technical Paper

Numerical Simulation of Turbulent Mixing in a Transient Jet

1993-10-01
932657
To understand further the mixing process between the injected fuel and air in the combustion chamber of a diesel engine, the turbulent mixing process in a one-phase, two-dimensional transient jet was theoretically studied using the discrete vortex simulation. First, the simulation model was evaluated by comparisons between calculated and experimental data on two-dimensional turbulent jets. Second, the trajectories of the injected fluid elements marked with different colors were graphically demonstrated. Also the process of entrainment of the surrounding fluid into the jet was visually presented using colored tracers.
Technical Paper

Quantitative Measurement of Fuel Vapor Concentration in an Unsteady Evaporating Spray via a 2-D Mie-Scattering Imaging Technique

1993-10-01
932653
The cross-sectional distribution of fuel vapor concentration in an evaporating spray was measured quantitatively by a new scattering imaging technique, silicone particle scattering imaging method, which was proposed in a previous paper[1]. When fuel containing silicone oil injected into a nitrogen environment at high temperature, the volatile base fuel in the droplets vaporized rapidly, leaving behind small droplets of silicone oil suspended in the vapor-gas mixture. The silicone oil droplets were illuminated by a thin laser sheet, and the scattered light was imaged by a CCD camera. The cross-sectional distribution of vapor concentration was estimated from the scattering image of the silicone oil droplets by Mie scattering theory. The results demonstrated clearly the inhomogeneity of the fuel vapor concentration. The distribution of vapor concentration was discontinuous, and islands of rich mixture with a scale of several millimeters existed in the center region of the spray.
Technical Paper

2-D Imaging of Fuel Vapor Concentration in a Diesel Spray via Exciplex-Based Fluorescence Technique

1993-10-01
932652
To measure the fuel vapor concentration in an unsteady evaporating spray injected into nitrogen atmosphere, the exciplex-forming method, which produces spectrally separated fluorescence from the liquid and vapor phase, was applied in this study. Two experiments were conducted to investigate the qualitative and quantitative applicability of the technique in a high temperature and high pressure atmosphere during the fuel injection period. One is to examine the thermal decomposition of TMPD dopant at a high temperature and a high pressure nitrogen atmosphere during a short period of time. The other is to calibrate the relationship between fluorescence intensity and vapor concentration of TMPD at different vapor temperatures. And then, the qualitative measurement of fuel vapor concentration distributions in diesel sprays was made by applying the technique.
Technical Paper

Mixing Enhancement in Diesel-Like Flames via Flame Impingement on Turbulence-Generating Plates

1992-10-01
922210
Soot concentration is very high in the periphery near the head of an unsteady spray flame which is achieved in a quiescent atmosphere in a rapid compression machine. To reduce soot concentration in this region, it was intended to improve fuel-air mixing by letting the flame impinge on a turbulence-generating plate. Two types of turbulence-generating plates, one donut-type, the other cross-type, were tested. Soot concentration in the flame was imaged using the laser shadow technique. The effect of injection pressure on soot reduction by the flame impingement was also investigated. The overall soot concentration is reduced significantly in the case when the flame impinges on the cross-type turbulence-generating plate at 50 mm (333 nozzle diameters) from the nozzle exit. The flame impingement on the cross-type turbulence-generating plate at 333 nozzle diameters makes soot reduction little dependent on injection pressures.
Technical Paper

Effects of Flame Motion and Temperature on Local Wall Heat Transfer in a Rapid Compression-Expansion Machine Simulating Diesel Combustion

1992-10-01
922208
Local heat flux from the flame to the combustion chamber wall, q̇, was measured the wall surfaces of a rapid compression-expansion machine which can simulate diesel combustion. Temperature of the flame zone, T1, was calculated by a thermodynamic two-zone model using measured values of cylinder pressure and flame volume. A local heat transfer coefficient was proposed which is defined as q̇/(T1-Tw). Experiments showed that the local heat transfer coefficient depends slightly on the temperature difference, T1-Tw, but depends significantly on the velocity of the flame which contacts the wall surface.
X