Refine Your Search

Topic

Author

Search Results

Journal Article

Simultaneous Measurements of Aromatic Hydrocarbons in Exhaust using a Laser Ionization Method

2009-11-02
2009-01-2742
A simultaneous multi-composition analyzing (SMCA) resonance enhanced multi-photon ionization (REMPI) system was used to investigate gasoline engine exhaust. Observed peaks for exhaust were smaller mass numbers than those from diesel exhaust. However, large species up to three ring aromatics were observed suggesting that soot precursor forms even in the gasoline engine. At low catalyst temperature condition, the reduction efficiencies of a three-way catalyst were higher for higher mass numbers. This result indicates that the larger species accumulate in the catalyst or elsewhere due to their lower vapor pressures. To evaluate the emission of low volatility species, the accumulation should be taken into account. In the hot mode, reduction efficiencies for aromatic species of three-way catalyst were almost 99.5% however, they fall to 70% in the cold start condition.
Journal Article

Particulate Matter Trapping and Oxidation on a Catalyst Membrane

2010-04-12
2010-01-0808
Particulate matter (PM) trapping and oxidation in regeneration on the surface of a diesel particulate catalyst-membrane filter (DPMFs) were investigated in detail using an all-in-focus optical microscope. The DPMF consists of two-layer sintered filters, where a SiC-nanoparticle membrane (made from a mixture of 80 nm and 500 nm powders) covers the surface of a conventional SiC filter. Using a visualization experiment, it was shown that PMs were trapped homogeneously along fine surface pores of the membrane's top surface, whereas in the regeneration process, the particulates in contact with the membrane may have been oxidized with some catalytic effect of the SiC nanoparticles. A soot cake was reacted continuously on the nanoparticles since pushed by a gas flow. The oxidation temperature of particulate trapped on the SiC-nanoparticle membrane was about 75 degrees lower than that on the conventional diesel particulate filters (DPF) without a catalyst.
Technical Paper

Stereoscopic Micro-PIV Measurement of Near-Wall Velocity Distribution in Strong Tumble Flow under Motored SI Engine Condition

2020-09-15
2020-01-2019
In a state-of-the-art lean-burn spark ignition engine, a strong in-cylinder flow field with enhanced turbulence intensity is formed, and understanding the wall heat transfer mechanism of such a complex flow is required. The flow velocity and temperature profiles inside the wall boundary layer are strongly related to the heat transfer mechanism. In this study, two-dimensional three-component (2D3C) velocity distribution near the piston top surface was measured during the compression stroke in a strong tumble flow using a rapid compression and expansion machine (RCEM) and a stereoscopic micro-PIV system. The bore, stroke, compression ratio, and compression time were 75 mm, 128 mm, 15, and 30 ms (equivalent to 1000 rpm), respectively.
Journal Article

Investigation of Soot Oxidation Carried out on Membrane Filters Composed of SiC Nanoparticles

2015-09-01
2015-01-2015
The diesel particulate membrane filter (DPMF) is a good solution to the problem of high pressure drop that exists across diesel particulate filters (DPFs) as a result of the soot trapping process. Moreover, DPMFs that have a membrane layer composed of SiC nanoparticles can reduce the oxidation temperature of soot and the apparent activation energy. The SiC nanoparticles have an oxide layer on their surface, with a thickness less than 10 nm. From the visualization of soot oxidation on the surface of SiC nanoparticles by an environmental transmission electron microscope (ETEM), soot oxidation is seen to occur at the interface between the soot and oxide layers. The soot oxidation temperature dependency of the contact area between soot and SiC nanoparticles was evaluated using a temperature programmed reactor (TPR). The contact area between soot and SiC nanoparticles was varied by changing the ratio of SiC nanoparticles and carbon black (CB), which was used as an alternative to soot.
Journal Article

Microscopic Visualization of PM Trapping and Regeneration in Micro-Structural Pores of a DPF Wall

2009-04-20
2009-01-1476
Trapping and regeneration processes in a SiC wall-flow diesel particulate filter (DPF) without a catalyst were investigated in detail through microscopic visualization. By microscopic observation of the cross section and surface, the transition from depth filtration to surface filtration could be observed clearly. The open pores on the wall surface were strongly related to the filtration depth of diesel particulate matter (PM). During the regeneration process, after the soot cake was burnt out, the particulates trapped inside the surface pores were oxidized. As a result, the particulate trapping and oxidation behaviors were strongly dependent on the microstructural surface pores.
Journal Article

Laser-Induced Phosphorescence Thermography of Combustion Chamber Wall of Diesel Engine

2008-04-14
2008-01-1069
In order to investigate the mechanism of heat transfer on the chamber wall of direct-injection diesel engines, 2-D temperature imaging and heat flux measurement in the flame impinging region on the chamber wall were conducted using laser-induced phosphorescence technique. The temperature of the chamber wall surface was measured by the calibrated intensity variation of the 355nm-excited laser-induced phosphorescence from an electrophoretically deposited thin layer of La2O2S:Eu phosphor on a quartz glass plate placed in a rapid compression and expansion machine (RCEM). Instantaneous 2-D images of wall temperature at different timings after start of injection and time-resolved (10kHz) heat flux near the flame impinging region were obtained for combusting and non-combusting diesel sprays with impinging distance of 23.4mm at different injection pressures (80 and 120MPa).
Journal Article

Visualization of Oxidation of Soot Nanoparticles Trapped on a Diesel Particulate Membrane Filter

2011-04-12
2011-01-0602
Through microscopic visualization experiments, a process generally known as depth filtration was shown to be caused by surface pores. Moreover, the existence of a soot cake layer was an important advantage for filtration performance because it could trap most of the particulates. We proposed an ideal diesel particulate filter (DPF), in which a silicon carbide (SiC) nanoparticle membrane (made from a mixture of 80 nm and 500 nm powders) instead of a soot cake was sintered on the DPF wall surface; this improved the filtration performance at the beginning of the trapping process and reduced energy consumption during the regeneration process. The proposed filter was called a diesel particulate membrane filter (DPMF). A diesel fuel lamp was used in the trapping process to verify the trapping and oxidation mechanisms of ultrafine particulate matter. Thus, the filtration performance of the membrane filters was shown to be better than that of conventional DPFs.
Journal Article

Scanning Electron Microscopic Visualization of Bridge Formation inside the Porous Channels of Diesel Particulate Filters

2016-10-24
2016-01-9079
Time-lapse images of particulate matter (PM) deposition on diesel particulate filters (DPFs) at the PM-particle scale were obtained via field-emission scanning electron microscopy (FE-SEM). This particle scale time-series visualization showed the detailed processes of PM accumulation inside the DPF. First, PM introduced into a micro-pore of the DPF wall was deposited onto the surface of SiC grains composing the DPF, where it formed dendritic structures. The dendrite structures were locally grown at the contracted flow area between the SiC grains by accumulation of PM, ultimately constructing a bridge and closing the porous channel. To investigate the dominant parameters governing bridge formation, the filtration efficiency by Brownian diffusion and by interception obtained using theoretical filtration efficiency analysis of a spherical collector model were compared with the visualization results.
Technical Paper

A Study on Effect of Heterogeneity of Oxygen Concentration of Mixture in a Combustion Chamber on Combustion and Emissions of Diesel Engine

2007-07-23
2007-01-1845
In this study, the combustion characteristics of diesel flame achieved in a rapid compression and expansion machine (RCEM) at various patterns of oxygen distribution in the chamber are investigated in order to clarify the effect of heterogeneity of oxygen distribution in diesel engines induced by EGR on the soot and NOx emissions. To make the heterogeneous distribution of oxygen in a combustion chamber, the mixtures with different oxygen concentrations are injected through the each different port located on the cylinder wall. Results indicate that the amount of oxygen entrained into the spray upstream the luminous flame region affects the NO emission from diesel flame strongly.
Technical Paper

Visualization Study of PM Trapping and Reaction Phenomena in Micro-structural Pores through Cross Section of DPF Wall

2007-04-16
2007-01-0917
Trapping of diesel particulates and phenomena of chemical reaction in regeneration were investigated by visualization through the cross-sectional area of a diesel-particulate-filter wall, using a digital-microscope with a high focusing depth. Herein, SiC-DPF walls were polished up to make a uniform height and to create a mirror-like surface on each SiC-particle-grain. At the beginning of the trapping process, it was observed that large particulates were trapped once in the small pores inside the wall, and then, since the flow-pattern was changed drastically, the trapped particulates were pushed out and blown off again, and finally, trapped in a region further downstream. As time passed, image analysis disclosed that since fine particulates were deposited around the SiC-particle-grain surface, the flow-channels became increasingly narrow.
Technical Paper

Simultaneous Measurements of the Components of VOCs and PAHs in Diesel Exhaust Gas using a Laser Ionization Method

2009-06-15
2009-01-1842
A simple real-time measurement system for the components of volatile organic compounds (VOCs) and polyaromatic hydrocarbons (PAHs) in automobile exhaust gas using a laser ionization method was developed. This method was used to detect VOCs and PAHs in the exhaust gas of a diesel truck while idling, at 60 km/h, and in the Japanese driving mode JE05. As a result, various VOCs and PAHs, such as xylene and naphthalene, were simultaneously detected, and real-time changes in their concentration were obtained at 1 s intervals.
Technical Paper

Real-time Analysis of Benzene in Exhaust Gas from Driving Automobiles Using Jet-REMPI Method

2009-11-02
2009-01-2740
Real-time analysis of benzene in automobile exhaust gas was performed using the Jet-REMPI (supersonic jet / resonance enhanced multi-photon ionization) method. Real-time benzene concentration of two diesel trucks and one gasoline vehicle driving in Japanese driving modes were observed under ppm level at 1 s intervals. As a result, it became obvious that there were many differences in their emission tendencies, because of their car types, driving conditions, and catalyst conditions. In two diesel vehicle, benzene emission tendencies were opposite. And, in a gasoline vehicle, emission pattern were different between hot and cold conditions due to the catalyst conditions.
Technical Paper

Lattice Boltzmann Simulation on Particle Transport and Captured Behaviors in a 3D-Reconstructed Micro Porous DPF

2010-04-12
2010-01-0534
In this study, particle transport and captured behaviors in a Diesel Particulate Filter (DPF) was investigated with Lattice Boltzmann Method. LBM calculation was performed to a 3D-reconstructed micro porous DPF substrate, which was obtained by micro-focus 3D X-ray technique. Simulating advection-diffusion behaviors of diesel particulates in micro porous channel, we adapted a LBM method used for high Peclet number flow, simulating flow conditions in DPFs. We investigated flow behaviors in a wide variety of inlet velocity. LBM simulation has clearly shown that non-dimensional flow field is similar in wide range of flow conditions in the DPF, because flow Reynolds number in the micro porous substrate is sufficiently low, dominated by laminar flow regime. It was also revealed that less than 40% pore channels was responsible for more than 80% volume flux in the porous substrate without particle loading.
Technical Paper

A Numerical Simulation of Turbulent Mixing in Transient Spray by LES (Comparison between Numerical and Experimental Results of Transient Particle Laden Jets)

2004-06-08
2004-01-2014
The purpose of this study is to investigate the turbulent mixing in a diesel spray by large eddy simulation (LES). As the first step for the numerical simulation of diesel spray by LES, the LES of transient circular gas jets and particle laden jets were conducted. The simulation of transient circular jets in cylindrical coordinates has numerical instability near the central axis. To reduce the instability of calculation, azimuthal velocity around the central axis is calculated by the linear interpolation and filter width around the axis is modified to the radial or axial grid scale level. A transient circular gas jet was calculated by the modified code and the computational results were compared with experimental results with a Reynolds number of about 13000. The computational results of mean velocity and turbulent intensity agreed with experimental results for z/D>10. Predicted tip penetration of the jet also agreed to experimental data.
Technical Paper

Measurement of Excitation-Emission Matrix of Shock-heated PAHs using a Multi-wavelength Laser Source

2003-05-19
2003-01-1785
Measurements of Excitation-Emission Matrix (EEM) of shock-heated vapors of polycyclic aromatic hydrocarbons (PAHs) at high temperature (750-1500K) and high pressure (0.3-1.3MPa) conditions were conducted using a multi-wavelength excitation laser in order to demonstrate the potential of the single-measurement EEM fluorometry for investigation of soot precursors. Argon-diluted vapors of naphthalene and pyrene, as PAH model compounds, were heated in an optically accessible shock tube. The PAH vapors were excited by a coherent multi-wavelength “rainbow” laser light generated by converting the 4th harmonic (266nm) of a pulsed Nd:YAG laser using a Raman cell frequency converter filled with high-pressure (2MPa) methane-hydrogen mixture.
Technical Paper

Fast Burning and Reduced Soot Formation via Ultra-High Pressure Diesel Fuel Injection

1991-02-01
910225
The relation between the characteristics of a non-evaporating spray and those of a corresponding frame achieved in a rapid compression machine was investigated experimentally. The fuel injection pressure was changed in a range of 55 to 260 MPa and the other injection parameters such as orifice diameter and injection duration were changed systematically. The characteristics of the non-evaporating spray such as the Sauter mean diameter and the mean excess air ratio of the spray were measured by an image analysis technique. The time required for a pressure rise due to combustion was taken as an index to characterize the flame. It was concluded that the mean excess air ratio of a spray is the major factor which controls the burning rate and that the high injection pressure is effective in shortening the combustion duration and reducing soot formation.
Technical Paper

2-D Soot Visualization in Unsteady Spray Flame by means of Laser Sheet Scattering Technique

1991-02-01
910223
The two-dimensional distribution of a soot cloud in an unsteady spray flame in a rapid compression machine(RCM) was visualized using the laser sheet scattering technique. A 40 mm x 50 mm cross section on the flame axis was illuminated by a thin laser sheet from a single pulsed Nd:YAG laser(wavelength 532 nm). Scattered light from soot particles was taken by a CCD camera via a high speed gated image intensifier. The temporal variation of the scattered light images were presented with the injection pressure as a parameter. The results showed that scattered light was intense near the periphery of the flame tip and that the scattered light becomes weaker significantly and disappears fast after the end of injection as injection pressure is increased. This technique was also applied to the visualization of the two-dimensional distribution of liquid droplets in the non-evaporating spray to correlate it with the soot concentration distribution.
Technical Paper

A Study of the Structure of Diesel Sprays Using 2-D Imaging Techniques

1992-02-01
920107
The structure of dense sprays was investigated using 2-D imaging techniques. To investigate the mechanism of atomization, the liquid phase in a non-evaporating spray was visualized by a thin laser sheet formed by a single pulse from a Nd:YAG laser at the distance from 4 to 19 mm from the nozzle orifice with the injection pressure and the surrounding gas density as parameters. A new technique for the visualization of vapor phase in an evaporating spray, the SSI (Silicone particle Scattering Imaging) method, was proposed to investigate the structure of the vapor phase regions of the spray.
Technical Paper

A Study on Soot Formation in Unsteady Spray Flames via 2-D Soot Imaging

1992-02-01
920114
The formation and oxidation processes of soot particles in unsteady spray flames were investigated in a quiescent atmosphere using 2-D laser sheet visualization. The mid-plane of a flame was illuminated twice during a short time-interval by a laser sheet from a double-pulsed YAG laser. An image pair of the scattered light from soot particles was taken by two intensified gated cameras in succession. The velocity vectors of soot clouds at various location in the sooting region were estimated using the spatial correlation between the image pair. The results of temporal and spatial variation of velocity and scattering intensity in the evolving soot clusters made it clear that soot is mainly formed in the periphery of the flame tip where the air entrainment is less and flame temperature favors soot formation.
Technical Paper

Simultaneous Measurements of Temperatures of Flame and Wall Surface in a Combustion Chamber of Diesel Engine

2011-08-30
2011-01-2047
In order to investigate the combustion phenomena in a combustion chamber of the diesel engine at transient operations, the simultaneous measurements of temperatures of flame and wall surface in a combustion chamber were conducted. The new technique for simultaneous measurements of flame temperature and wall surface was developed. Laser-Induced phosphorescence was used for the measurement of wall surface temperature which was coupled with the flame temperature measurement by a two-color pyrometry. The NOx and soot emissions were also measured simultaneously in transient operations. The relation between the temporal changes of emissions and temperatures of flame and surface wall are discussed. The results show that the temporal change of NOx emission during transient operation is similar to that of the average gas temperature in a chamber. On the other hand, the temporal change of soot emission is similar to neither that of flame temperature nor that of average gas temperature.
X