Refine Your Search




Search Results


The Future (& Past) of Electrified Vehicles

The presentation offers a brief history of the electric vehicle and parallels the realities of those early vehicles with the challenges and solutions of the electrified vehicles coming to market today. A technology evolution for every major component of these vehicles has now made this mode of transportation viable. The Focus Electric is Ford's first electric passenger car utilizing the advanced technology developments to meet the needs of electric car buyers in this emerging market. Presenter Charles Gray, Ford Motor Co.

Real-time Tire Imbalance Detection Using ABS Wheel Speed Sensors

This presentation proposes an approach to use ABS wheel speed sensor signals together with other vehicle state information from a brake control module to detect an unbalanced tire or tires in real-time. The proposed approach consists of two-stage algorithms that mix a qualitative method using band-pass filtering with a quantitative parameter identification using conditional least squares. This two-stage approach can improve the robustness of tire imbalance or imbalances. The proposed approach is verified through vehicle testing and the test results show the effectiveness of the approach. Presenter Jianbo Lu, Ford Motor Co.

OBD Experiences: A Ford Perspective

Some the OBD-II regulations have been around for a long time or seem to be intuitively obvious. It is easy to assume to assume that everyone knows how to implement them correctly, that is, until someone actually reads the words and tries to do it. Most often, these issues come up when modifying existing OBD features, not when creating completely new ones. This presentation contains a few examples of features that should have been easy to implement, but turned out not to be easy or simple. Presenter Paul Algis Baltusis, Ford Motor Co.

Future Development of EcoBoost Technology

Ford's EcoBoost GTDI engine technology (Gasoline Direct Injection, Turbo-charging and Downsizing) is being successfully implemented in the market place with the EcoBoost option accounting for significant volumes in vehicle lines as diverse as the F150 pickup truck, Edge CUV and the Lincoln MKS luxury sedan. A logical question would be what comes after GTDI? This presentation will review some of the technologies that will be required for further improvements in CO2, efficiency and performance building on the EcoBoost foundation as well as some of the challenges inherent in the new technologies and approaches. Presenter Eric W. Curtis, Ford Motor Co.

Ford: Driving Electric Car Efficiency

The Focus Electric is Ford�s first full-featured 5 passenger battery electric vehicle. The engineering team set our sights on achieving best-in-class function and efficiency and was successful with an EPA certified 1XX MPGe and range XXX then the facing competition allowing for a slightly lower capacity battery pack and larger vehicle without customer trade-off. We briefly overview the engineering method and technologies employed to deliver the results as well as sharing some of the functional challenges unique to this type of vehicle. Presenter Charles Gray, Ford Motor Co.

Hybrid Vehicle Battery OBD: Why, Wherefore, and How

The introduction of hybrid and plug-in hybrid electric vehicles has resulted in the introduction of battery systems into the realm of OBD II diagnostics. After a high-level overview of battery systems, general battery system fault responses are discussed, as well as which of these might be OBD faults. The alignment of the OBD regulations and DTC assignment in systems with large numbers of similar/identical components is discussed, along with apparent conflicts between existing OBD regulations and the physical realities of battery systems in HEVs and PHEVs. Presenter Dyche Anderson, Ford Motor Co.
Technical Paper

NVH Design and Development of the Duratec35 Engine from Ford Motor Company

Ford Motor Company has developed a new 3.5L V6 engine. The engine, called the Duratec35, represents a new architecture for Ford Motor Co. that will eventually power one in five Ford vehicles. The goals of the engine design were high output, fuel efficient, low emissions, and excellent NVH. This paper will describe the NVH process for the development of the engine, the NVH features included in the design, and the final results relative to the benchmarks.
Technical Paper

Gear Whine Improvements for an Automatic Transmission through Design Retargeting and Manufacturing Variability Reduction

Gear whine in 1st gear for an automatic transmission that has been in production for nearly thirty years was identified as an NVH issue. Due to advances in vehicle level refinement, and reduction of other masking noises, the automatic transmission gear whine became an issue with the customer. Since the transmission was already in production, the improvements had to be within the boundaries of manufacturing feasibility with existing equipment to avoid costly and time consuming investment in new machines. The approach used was one of identifying optimum values of existing gear parameters to provide a reduction in passenger compartment noise. The problem was in a light truck application. Objective noise measurements were recorded for 10 transmissions from more than 50 driven in vehicles. The transmissions were disassembled and the gears inspected.
Technical Paper

Analytical and Experimental Techniques in Solving the Plastic Intake Manifold NVH

The intent of this paper is to summarize the work of the V8 power plant intake manifold radiated noise study. In a particular V8 engine application, customer satisfaction feedback provided observations of existing unpleasant noise at the driver's ear. A comprehensive analysis of customer data indicated that a range from 500 to 800 Hz suggests a potential improvement in noise reduction at the driver's ear. In this study the noise source was determined using various accelerometers located throughout the valley of the engine and intake manifold. The overall surface velocity of the engine valley was ranked with respect to the overall surface velocity of the intake manifold. An intensity mapping technique was also used to determine the major component noise contribution. In order to validate the experimental findings, a series of analysis was also conducted. The analysis model included not only the plastic intake manifold, but also the whole powertrain.
Technical Paper

Aluminum Rail Rivet and Steel Rail Weld DOE and CAE Studies for NVH

Vehicle body with aluminum riveted construction instead of steel welded one will be a big challenge to NVH. In this paper, aluminum and steel rails with the dimensions similar to the rear rail portion of a typical mid-size sedan were fabricated. Rivets were used to assemble the aluminum rails while welds were used to assemble the steel rails. Adhesive, rivet/weld spacing, and rivet/weld location were the three major factors to be studied and their impact on NVH were investigated. The DOE matrix was developed using these three major factors. Modal tests were performed on those rails according to the DOE matrix. The FEA models corresponding to the hardware were built. CAE modal analysis were performed and compared with test data. The current in-house CAE modeling techniques for spot weld and adhesive were evaluated and validated with test data.
Technical Paper

Engine Excitation Decomposition Methods and V Engine Results

Engine excitation forces have been studied in the past using one of two methods; a lumped sum or a totally distributed approach. The lumped sum approach gives the well-understood engine inherent unbalance and the totally distributed approach is used in engine CAE models to determine the overall engine response. The approach that will be described in this paper identifies an intermediate level of sophistication. The methodology implemented considers single cylinder forces on the engine block, piston side thrust and main bearing forces, and decomposes them into their order content. The forces are then phased and geometrically distributed appropriately for each cylinder and then each order is analyzed relative to know distributions that are NVH concerns, V-block breathing, block side wall breathing, and block lateral and vertical bending.
Technical Paper

Finite element simulation of drive shaft in truck/SUV frontal crash

Drive shaft modelling effects frontal crash finite element simulation. A 35 mph rigid barrier impact of a body on frame SUV with an one piece drive shaft and a unibody SUV with a two piece drive shaft have been studied and simulated using finite element analyses. In the model, the drive shaft can take significant load in frontal impact crash. Assumptions regarding the drive shaft model can change the predicted engine motion in the simulation. This change influences the rocker @ B-pillar deceleration. Two modelling methods have been investigated in this study considering both joint mechanisms and material failure in dynamic impact. Model parameters for joint behavior and failure should be determined from vehicle design information and component testing. A body on frame SUV FEA model has been used to validate the drive shaft modeling technique by comparing the simulation results with crash test data.
Technical Paper

Fuel Economy Benefit of Cylinder Deactivation - Sensitivity to Vehicle Application and Operating Constraints

A Variable Displacement Engine (VDE) improves fuel economy by deactivating half the cylinders at light load. The actual fuel economy benefit attained in the vehicle depends on how often cylinders can be deactivated, which is a function of test cycle, engine size, and vehicle weight. In practice, cylinder deactivation will also be constrained by NVH (noise, vibration, and harshness). This paper presents fuel economy projections for VDE in several different engine and vehicle applications. Sensitivity to NVH considerations is quantified by calculating fuel economy with and without cylinder deactivation in various operating modes: idle, low engine speed, 1st and 2nd gear, and warm-up after cold start. The effects of lug limits and calibration hysteresis are also presented.
Technical Paper

Dimethoxy Methane in Diesel Fuel: Part 1. The Effect of Fuels and Engine Operating Modes on Emissions of Toxic Air Pollutants and Gas/Solid Phase PAH

The objective of this study was to quantify engine-out emissions of potentially toxic compounds from a modern diesel engine operated with different fuels including 15% v/v dimethoxy methane in a low sulfur diesel fuel. Five diesel fuels were examined: a low-sulfur, low-aromatic hydrocracked (∼1 ppm) fuel, the same low sulfur fuel containing 15% v/v dimethoxy methane, a Fischer-Tropsch fuel, a CARB fuel, and an EPA number 2 certification fuel. A DaimlerChrysler OM611 CIDI engine was controlled with a SwRI Rapid Prototyping Electronic Control system. The engine was operated over 4 speed-load modes. Each operating mode and fuel combination was run in triplicate. Thirty three potentially toxic compounds were measured for each fuel and mode.
Technical Paper

Dimethoxy Methane in Diesel Fuel: Part 3. The Effect of Pilot Injection, Fuels and Engine Operating Modes on Emissions of Toxic Air Pollutants and Gas/Solid Phase PAH

The objective of this study was to quantify the effect of pilot fuel injection on engine-out emissions of potentially toxic compounds from a modern diesel engine operated with different fuels including 15% v/v dimethoxy methane in a low-sulfur diesel fuel. Five diesel fuels were examined: a low-sulfur (∼1 ppm), low aromatic, hydrocracked fuel, the same low-sulfur fuel containing 15% v/v dimethoxy methane, a Fischer-Tropsch fuel, a California reformulated fuel, and a EPA number 2 certification fuel. A DaimlerChrysler OM611 CIDI engine was controlled with a SwRI Rapid Prototyping Electronic Control system. The pilot fuel injection was either turned off or turned on with engine control by either Location of Peak Pressure (LPP) of combustion or the original equipment manufacturer (OEM) calibration strategy. These three control strategies were compared over 2 speed-load modes run in triplicate. Thirty-three potentially toxic compounds were measured.
Technical Paper

An Ultra-Light Thin Sliding Door Design - A Multi-Product Multi-Material Solution

Sliding door designs are applied to rear side doors on vans and other large vehicles with a trend towards dual sliding doors with power operation. It is beneficial for the vehicle user to reduce the weight of and space occupied by these doors. Alcoa, in conjunction with Ford, has developed a multi-product, multi-material-based solution, which significantly reduces the cost of an aluminum sliding door and provides both consumer delight and stamping-assembly plant benefits. The design was successfully demonstrated through a concept readiness/technology demonstration program.
Technical Paper

Impact of Engine Operating Conditions on Low-NOx Emissions in a Light-Duty CIDI Engine Using Advanced Fuels

The control of NOx emissions is the greatest technical challenge in meeting future emission regulations for diesel engines. In this work, a modal analysis was performed for developing an engine control strategy to take advantage of fuel properties to minimize engine-out NOx emissions. This work focused on the use of EGR to reduce NOx while counteracting anticipated PM increases by using oxygenated fuels. A DaimlerChrysler OM611 CIDI engine for light-duty vehicles was controlled with a SwRI Rapid Prototyping Electronic Control System. Engine mapping consisted of sweeping parameters of greatest NOx impact, starting with OEM injection timing (including pilot injection) and EGR. The engine control strategy consisted of increased EGR and simultaneous modulation of both main and pilot injection timing to minimize NOx and PM emission indexes with constraints based on the impact of the modulation on BSFC, Smoke, Boost and BSHC.
Technical Paper

Robust Embedded Software Begins With High-Quality Requirements

In an effort to improve the quality of software and take advantage of Lessons Learned, Ford Motor Company has created a generic list of software requirements to help prevent software design errors, mistakes and faults from being delivered to our customer in our vehicles. Ford's intent of publishing these requirements is to provide a basis for an SAE Recommended Practice. Ford's goal is to encourage the software community to participate in the development of a recommended practice that can benefit all software developers. These particular requirements were developed for Automotive Body Features.