Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Effect of Road-Induced Vibration on Gas-Tightness of Vehicular Fuel Cell Stack

2016-04-05
2016-01-1186
The vehicular fuel cell stack is unavoidably impacted by the vibration in the real-world usage due to the road unevenness. However, effects of vibration on stacks have yet to be completely understood. In this work, the mechanical integrity and gas-tightness of the stack were investigated through a strengthen road vibration test with a duration of 200 h. The excitation signals applied in the vibration test were simulated by the acceleration of the stack, which were previously measured in a vehicle vibration test. The load signals of the vehicle vibration test were iterated through a road simulator from vehicle acceleration signals which were originally sampled in the proving ground. Frequency sweep test was conducted before and after the vibration test. During the vibration test, mechanical structure inspection and pressure maintaining test of the stack were conducted at regular intervals.
Technical Paper

Dynamic Durability Prediction of Fuel Cells Using Long Short-Term Memory Neural Network

2022-03-29
2022-01-0687
Durability performance prediction is a critical issue in fuel cell research. During the demonstration operation of fuel cell commercial vehicles in China, this issue has attracted more attention. In this article, the long short-term memory neural network (LSTMNN), which is an improved recurrent neural network (RNN), and the demonstration operation data are used to establish the prediction model to predict the durability performance of the fuel cell stack. Then, a model based on a back-propagation neural network (BPNN) is established to be a control group. The demonstration operation data is divided into training group and validation group. The former is used to train the prediction model, and the latter is used to verify the validity and accuracy of the prediction model. The outputs of the prediction model, as the durability performance evaluation indexes of the fuel cell, are the polarization curve (current-voltage curve) and the voltage decay curve (time-voltage curve).
Technical Paper

Effect of Clamping Load on the Performance and Contact Pressure of PEMFC Stack

2018-04-03
2018-01-1310
In the assembling process of proton exchange membrane fuel cell (PEMFC) stack, the clamping load is known to have direct effect on the contact pressure of interfaces. Compression on the membrane electrode assembly (MEA) results in change in gas diffusion layer (GDL), porosity and electrical resistance, thus affecting the performance, durability and reliability of the PEMFC stack. In this paper, the relation between clamping load and performance of PEMFC stack was obtained by experimental study, and the influence of clamping load on the contact pressure of MEAs was analyzed by finite element analysis. The performance test rig was established and the approach of polarization curve testing was introduced. Both the effect of magnitude and distribution of the bolt torques on the performance were taken into account. The finite element model was adopted to figure out the magnitude and uniformity of contact pressure of MEAs, which provides a new angle to understand the experimental results.
Technical Paper

Research on Automatic Removal of Outliers in Fuel Cell Test Data and Fitting Method of Polarization Curve

2024-04-09
2024-01-2896
Fuel cell vehicles have always garnered a lot of attention in terms of energy utilization and environmental protection. In the analysis of fuel cell performance, there are usually some outliers present in the raw experimental data that can significantly affect the data analysis results. Therefore, data cleaning work is necessary to remove these outliers. The polarization curve is a crucial tool for describing the basic characteristics of fuel cells, typically described by semi-empirical formulas. The parameters in these semi-empirical formulas are fitted using the raw experimental data, so how to quickly and effectively automatically identify and remove data outliers is a crucial step in the process of fitting polarization curve parameters. This article explores data-cleaning methods based on the Local Outlier Factor (LOF) algorithm and the Isolation Forest algorithm to remove data outliers.
X