Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Distributed Drive Electric Vehicle Longitudinal Velocity Estimation with Adaptive Kalman Filter: Theory and Experiment

2019-04-02
2019-01-0439
Velocity is one of the most important inputs of active safety systems such as ABS, TCS, ESC, ACC, AEB et al. In a distributed drive electric vehicle equipped with four in-wheel motors, velocity is hard to obtain due to all-wheel drive, especially in wheel slipping conditions. This paper focus on longitudinal velocity estimation of the distributed drive electric vehicle. Firstly, a basic longitudinal velocity estimation method is built based on a typical Kalman filter, where four wheel speeds obtained by wheel speed sensors constitute an observation variable and the longitudinal acceleration measured by an inertia moment unit is chosen as input variable. In simulations, the typical Kalman filter show good results when no wheel slips; when one or more wheels slip, the typical Kalman filter with constant covariance matrices does not work well. Therefore, a gain matrix adjusting Kalman filter which can detect the wheel slip and cope with that is proposed.
Technical Paper

Model-Based Pitch Control for Distributed Drive Electric Vehicle

2019-04-02
2019-01-0451
On the dual-motor electric vehicle, which is driven by two electric motors mounted on the front and rear axles respectively, longitudinal dynamic control and electro-dynamic braking can be achieved by controlling the torque of front and rear axle motors respectively. Suspension displacement is related to the wheel torque, thus the pitch of vehicle body can be influenced by changing the torque distribution ratio. The pitch of the body has a great influence on the vehicle comfort, which occurs mainly during acceleration and braking progress. Traditionally active suspension is adopted to control the pitch of body. Instead, in this paper an ideal torque distribution strategy is developed to limit the pitch during acceleration and braking progress. This paper first explores the relationship between the torque distribution and the body pitch through the real vehicle test, which reveals the feasibility of the vehicle comfort promotion by optimizing the torque distribution coefficient.
Technical Paper

A Control Allocation Strategy for Electric Vehicles with In-wheel Motors and Hydraulic Brake System

2015-04-14
2015-01-1600
Distributed drive electric vehicle (EV) is driven by four independent hub motors mounted directly in wheels and retains traditional hydraulic brake system. So it can quickly produce driving/braking motor torque and large stable hydraulic braking force. In this paper a new control allocation strategy for distributed drive electric vehicle is proposed to improve vehicle's lateral stability performance. It exploits the quick response of motor torque and controllable hydraulic pressure of the hydraulic brake system. The allocation strategy consists of two sections. The first section uses an optimal allocation controller to calculate the total longitudinal force of each wheel. In the controller, a dynamic efficiency matrix is designed via local linearization to improve lateral stability control performance, as it considers the influence of tire coupling characteristics over yaw moment control in extreme situations.
Technical Paper

Study of Stability Control for Electric Vehicles with Active Control Differential

2013-04-08
2013-01-0715
This article conducts a research on the active control differential (ACD) yaw moment stability control for central motor driven automobiles. By calculation, the active control differential yaw moment generation ability which is limited by the maximum differential twist ratio and the motor output torque is not enough compared with traditional Electronic Stability Program (ESP). A Matlab and CarSim joint simulation is applied on double lane change and sine wave steering input condition, through which the active control differential effect is analyzed. It is concluded that yaw moment control using active control differential has improved the steering sensitivity and yaw rate tracking effect to some extent in double lane change test and it also has been verified that it works effectively to keep the stability of the vehicle in sine wave test.
Technical Paper

An Anti-Lock Braking Control Strategy for 4WD Electric Vehicle Based on Variable Structure Control

2013-04-08
2013-01-0717
Based on the four-wheel-drive electric vehicle (4WD EV), a variable structure control (VSC) strategy is designed in this paper for the anti-lock braking control. With nonpeak friction coefficient as target, sign judgment method of switch function in this VSC strategy is improved and a new control algorithm is proposed. The improved VSC strategy is made robust to the parameters of the algorithm and verified by the computer simulation as well as the hard-in-loop test. The results show that the slip rate can be controlled to a point in the stable area near the optimal slip ratio and the control strategy can effectively realize the anti-lock braking control.
Technical Paper

Handling Improvement for Distributed Drive Electric Vehicle Based on Motion Tracking Control

2018-04-03
2018-01-0564
The integrated control system which combines the differential drive assisted steering (DDAS) and the direct yaw moment control (DYC) for the distributed drive electric vehicle (DDEV) is studied. A handling improvement algorithm for the normal cornering maneuvers is proposed based on motion tracking control. Considering the ideal assistant power character curves at different velocities, an open-loop DDAS control strategy is developed to respond the driver’s demand of steering wheel torque. The DYC strategy contains the steering angle feedforward and the yaw rate feedback. The steering angle feedforward control strategy is employed to improve yaw rate steady gain of vehicle. The maximum feedforward coefficients at different velocities are obtained from the constraint of the motor external characteristic, final feedforward coefficients are calculated according to the ideal assistant power character curve of the DDAS.
X