Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Voltage and Voltage Consistency Attenuation Law of the Fuel Cell Stack Based on the Durability Cycle Condition

2019-04-02
2019-01-0386
Based on the durability cycle test of fuel cell stack and the characteristics of cyclic working conditions, this paper defines the characteristic current point and studies the attenuation rule of the fuel cell stack voltage over time under the characteristic current point. The results show that the voltage of the fuel cell stack appears to be linear downward under the characteristic current point. and the voltage attenuation rate of the fuel cell stack increases quadratically with the increase of the current density in addition to the open-circuit voltage point. Then the coefficient of variation is introduced in statistics as the index to characterize the voltage consistency attenuation of the fuel cell stack, and its variation rule is explored. The results show that the voltage consistency of vehicle fuel cell stack decreases seriously with the increase of running time under the condition of durable cycling.
Technical Paper

Effect of Clamping Load on the Performance and Contact Pressure of PEMFC Stack

2018-04-03
2018-01-1310
In the assembling process of proton exchange membrane fuel cell (PEMFC) stack, the clamping load is known to have direct effect on the contact pressure of interfaces. Compression on the membrane electrode assembly (MEA) results in change in gas diffusion layer (GDL), porosity and electrical resistance, thus affecting the performance, durability and reliability of the PEMFC stack. In this paper, the relation between clamping load and performance of PEMFC stack was obtained by experimental study, and the influence of clamping load on the contact pressure of MEAs was analyzed by finite element analysis. The performance test rig was established and the approach of polarization curve testing was introduced. Both the effect of magnitude and distribution of the bolt torques on the performance were taken into account. The finite element model was adopted to figure out the magnitude and uniformity of contact pressure of MEAs, which provides a new angle to understand the experimental results.
Technical Paper

Performance Prediction of Automotive Fuel Cell Stack with Genetic Algorithm-BP Neural Network

2018-04-03
2018-01-1313
Fuel cell vehicle commercialization and mass production are challenged by the durability of fuel cells. In order to research the durability of fuel cell stack, it is necessary to carry out the related durability test. The performance prediction of fuel cell stack can be based on a short time durability test result to accurately predict the performance of the fuel cell stack, so it can ensure the timeliness of the test results and reduce the cost of test. In this paper, genetic algorithm-BP neural network (GA-BPNN) is proposed to modeling automotive fuel cell stack to predict the performance of it. Based on the strong global searching ability of genetic algorithm, the initial weights and threshold selection of neural networks are optimized to solve the shortcoming that the random selection of the initial weights and thresholds of BP neural network which can easily lead to the local optimal value.
Technical Paper

Effect of Road-Induced Vibration on Gas-Tightness of Vehicular Fuel Cell Stack

2016-04-05
2016-01-1186
The vehicular fuel cell stack is unavoidably impacted by the vibration in the real-world usage due to the road unevenness. However, effects of vibration on stacks have yet to be completely understood. In this work, the mechanical integrity and gas-tightness of the stack were investigated through a strengthen road vibration test with a duration of 200 h. The excitation signals applied in the vibration test were simulated by the acceleration of the stack, which were previously measured in a vehicle vibration test. The load signals of the vehicle vibration test were iterated through a road simulator from vehicle acceleration signals which were originally sampled in the proving ground. Frequency sweep test was conducted before and after the vibration test. During the vibration test, mechanical structure inspection and pressure maintaining test of the stack were conducted at regular intervals.
X