Refine Your Search

Topic

Search Results

Viewing 1 to 10 of 10
Technical Paper

Study on Correlation between After-Treatment Performance and Running Conditions, Exhaust Parameters of Heavy-Duty Diesel Vehicle

2018-04-03
2018-01-0338
The increasingly stringent emission regulations have mandated the use of CCRT (catalyzed continuously regeneration trap) made by upstream DOC (diesel oxidation catalyst) and downstream CDPF (catalyzed diesel particulate filter) for heavy-duty diesel vehicles, which is proved to be the only way that can efficiently control the gaseous and particulate emissions. The performance of after-treatment is greatly influenced by the running conditions of the diesel vehicle and its exhaust parameters, so this paper intended to use grey relational analysis to study the correlation between running conditions (velocity, acceleration, VSP (vehicle specific power)), exhaust parameters (exhaust flow rate, DOC inlet temperature, concentrations of CO, THC, O2 and NOX) and the performance of DOC and CCRT based on chassis dynamometer test. Results showed that the effect of DOC on CO and THC is mainly affected by exhaust flow rate, exhaust temperature and THC concentration.
Technical Paper

Lane Marking Detection for Highway Scenes based on Solid-state LiDARs

2021-12-15
2021-01-7008
Lane marking detection plays a crucial role in Autonomous Driving Systems or Advanced Driving Assistance System. Vision based lane marking detection technology has been well discussed and put into practical application. LiDAR is more stable for challenging environment compared to cameras, and with the development of LiDAR technology, price and lifetime are no longer an issue. We propose a lane marking detection algorithm based on solid-state LiDARs. First a series of data pre-processing operations were done for the solid-state LiDARs with small field of view, and the needed ground points are extracted by the RANSAC method. Then, based on the OTSU method, we propose an approach for extracting lane marking points using intensity information.
Technical Paper

Load Spectrum Extraction of Double-Wishbone Independent Suspension Bracket Based on Virtual Iteration

2023-04-11
2023-01-0774
The displacement of the shaft head fails to be accurately measured while the three-axle heavy-duty truck is driving on the reinforced pavement. In order to obtain accurate fatigue load spectrum of the suspension bracket, the acceleration signals of the shaft heads of the suspension obtained by the reinforced pavement test measurement are virtually iterated as responses. A more accurate model of the rigid-flexible coupled multi-body dynamics (MBD) of the whole vehicle is established by introducing a flexible frame based on the comprehensive modal theory. Furthermore, the vertical displacements of the shaft heads are obtained by the reverse solution of the virtual iterative method with well-pleasing precision. The accuracy of the virtual iteration is verified by comparing the simulation results with the vertical acceleration of the shaft head under the reinforced pavement in the time domain and damage domain.
Technical Paper

Analysis and Redesign of Connection Part in Cargo Truck Chassis for Fatigue Durability Performance

2023-04-11
2023-01-0599
With the growing prosperity of the long-distance freight and urban logistics industry, the demand for cargo trucks is gradually increasing. The connecting bracket is the critical connecting part of the truck chassis, which bears the load transmitted by the road excitation and reduces the damage to the frame caused by the load. However, the occurrence of rough road conditions is inevitable in heavy-duty transportation. In this paper, road durability tests and fatigue life analysis are carried out on the original structure to ensure the safety of the vehicle. Based on the known boundary and load constraints, a lightweight and high-performance structure is obtained through size optimization, as the original structure cannot meet the performance requirements. Firstly, the road test was conducted on the truck where the original bracket structure is located.
Technical Paper

Efficient Trajectory Planning for Tractor-Trailer Vehicles with an Incremental Optimization Solving Algorithm

2022-03-29
2022-01-0138
A tractor-trailer vehicle (TTV) consists of an actuated tractor attached with several full trailers. Because of its nonlinear and noncompleted constraints, it is a challenging task to avoid collisions for path planner. In this paper, we propose an efficient method to plan an optimal trajectory for TTV to reach the destination without any collision. To deal with the complicated constraints, the trajectory planning problem is formulated as an optimal control problem uniformly, which can be solved by the interior point method. A novel incremental optimization solving algorithm (IOSA) is proposed to accelerate the optimization process, which makes the number of trailers and the size of obstacles increase asynchronously. Simulation experiments are carried out in two scenarios with static obstacles. Compared with other methods, the results show that the planning method with IOSA outperforms in the efficiency.
Technical Paper

Numerical Simulation and Optimization of the Underhood Fluid Field and Cooling Performance for Heavy Duty Commercial Vehicle under Different Driving Conditions

2015-09-29
2015-01-2902
As the commercial vehicle increases staggeringly in China, environmental pollution and excessively fuel consumption can't be neglected anymore. Vehicle thermal management has been adopted by many vehicle manufactures as an ideal alternative to reduce fuel consumption and exhaust emission by its cost-efficient and effective merit. In addition, the components in heavy duty commercial vehicle engine hood may suffer overheat harm. Hence investigating the thermal characteristics in engine hood can be an effective way to identify and dismiss the potential overheat harm. In terms of this, the paper has adopted CFD simulation method to obtain the comprehensive thermal flow field characteristics of engine hood in a heavy commercial vehicle. Then by analyzing the thermal flow field in engine hood, concerning optimization strategies were put forward to improve the thermal environment.
Journal Article

A Novel Asynchronous UWB Positioning System for Autonomous Trucks in an Automated Container Terminal

2020-04-14
2020-01-1026
As a critical technology for autonomous vehicles, high precise positioning is essential for automated container terminals to implement intelligent dispatching and to improve container transport efficiency. Because of the unstable performance of global positioning system (GPS) in some circumstances, an ultra wide band (UWB) positioning system is developed for autonomous trucks in an automated container terminal. In this paper, an asynchronous structure is adopted in the system, and a three-dimensional (3D) localization method is proposed. Other than a traditional UWB positioning system with a server, in this asynchronous system, positions are calculated in the vehicle. Therefore, propagation delays from the server to vehicles are eliminated, and the real-time performance can be significantly improved. Traditional 3D localization methods based on time difference of arrival (TDOA) are mostly invalid with anchors in the same plane.
Journal Article

The Study on Fatigue Bench Test and Durability Evaluation of a Light Truck Cab

2020-04-14
2020-01-0760
The cab is an essential part of a light truck, and its fatigue durability performance plays an important role in the design and development stage. Accelerated fatigue bench test has been widely applied to product development of carmakers for its low cost and short development cycle. However, in reality, interference exists generally in torsional conditions for the light truck cab when tested on the 4-post vehicle road simulation system. To solve this problem and minimize the lateral force applied on the hydraulic cylinders, the direction and size combinations of displacement release about front and rear suspensions were discussed based on multi-body dynamics simulation and fixture design theory in this paper. Through comparative study, the optimum design and layout scheme of fixtures was determined to conduct the next test procedure. The weak positions of the light truck cab were firstly predicted by utilizing finite element method (FEM) and fatigue analysis theory.
Technical Paper

Energy Transformation Propelled Evolution of Automotive Carbon Emissions

2023-10-30
2023-01-7006
The Chinese government and industries have proposed strategic plans and policies for automotive renewable-energy transformation in response to China’s commitments to peak the national carbon emissions before 2030 and to achieve carbon neutrality by 2060. We thus analyze the evolution of carbon emissions from the vehicle fleet in China with our data-driven models based on these plans. Our results indicate that the vehicle life-cycle carbon emissions are appreciable, accounting for 8.9% of the national total and 11.3% of energy combustion in 2020. Commercial vehicles are the primary source of automotive carbon emissions, accounting for about 60% of the vehicle energy cycle. Among these, heavy-duty trucks are the most important, producing 38.99% of the total carbon emissions in the vehicle operation stage in 2020 and 52.18% in 2035.
Technical Paper

Performance Parity Study of Electrified Class 8 Semi Trucks with Diesel Counterparts

2024-04-09
2024-01-2164
It is recognized that the heavier vehicles, the more emissions, thus the more imperative to electrify. In this study, long haul heavy-duty trucks are referred as HDTs, which are recognized as one of the hard-to-electrify vehicle segments, though the automotive industry has gained trending advantages of electrifying both light-duty cars and SUVs. Since big rigs such as Class 8 HDTs have significant road-block challenges for electrification due to the demanding long-hour work cycles in all weathers, this study focuses on quantifying those electrification challenges by taking advantage of the public data of Class 8 tractors & trailers. Tesla Semi is the research target though its vehicle spec data is sorted out with fragmentary information in the public domain. The key task is to analyze the battery capacity requirements due to environmental temperature and inherent aging over the lifespan.
X